Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T22:54:36.522Z Has data issue: false hasContentIssue false

Congruences for convolutions of Hilbert modular forms

Published online by Cambridge University Press:  17 May 2012

THOMAS WARD*
Affiliation:
Heilbronn Institute for Mathematical Research, Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW. e-mail: thomas.ward@bristol.ac.uk

Abstract

Let f be a primitive, cuspidal Hilbert modular form of parallel weight. We investigate the Rankin convolution L-values L(f,g,s), where g is a theta-lift modular form corresponding to a finite-order character. We prove weak forms of Kato's ‘false Tate curve’ congruences for these values, of the form predicted by conjectures in non-commmutative Iwasawa theory.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bosma, W., Cannon, J. and Playoust, C.The MAGMA algebra system I: the user language. J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
[2]Bouganis, T.Special values of L-functions and false Tate curve extensions, with an appendix by V. Dokchitser. J. Lond. Math. Soc. 82 (2010), 596620.CrossRefGoogle Scholar
[3]Bouganis, T. and Dokchitser, V.Algebraicity of L-values for elliptic curves in a false Tate curve tower. Math. Proc. Camb. Philo. Soc. 142 (2007), 193204.CrossRefGoogle Scholar
[4]Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O.The GL2 main conjecture for elliptic curves without complex multiplication. Inst. Hautes Études Sci. Publ. Math. 101 (2005), 163208.CrossRefGoogle Scholar
[5]Delbourgo, D. and Ward, T.Non-abelian congruences between L-values of elliptic curves. Ann. Inst. Fourier. 58 (2008), 10231055.CrossRefGoogle Scholar
[6]Delbourgo, D. and Ward, T.The growth of CM periods over false Tate extensions. Experiment. Math. 19 (2010), 195210.CrossRefGoogle Scholar
[7]Deligne, P.Les constantes des équations fonctionnelles des fonctions L. In Modular Functions of One Variable II, Lecture Notes in Math. vol. 349 (Springer, 1973), pp. 501597.CrossRefGoogle Scholar
[8]Dimitrov, M.Galois representations modulo p and cohomology of Hilbert modular varieties. Ann. Sci. Éc. Norm. Sup. 38 (2005), 505551.CrossRefGoogle Scholar
[9]Doi, K., Hida, H. and Ishii, H.Discriminant of Hecke fields and twisted adjoint L-values for GL2. Invent. Math. 134 (1998), 547577.CrossRefGoogle Scholar
[10]Dokchitser, T. and Dokchitser, V.Computations in non-commutative Iwasawa theory. Proc. Lond. Math. Soc. (3) 94 (2007), 211272.CrossRefGoogle Scholar
[11]Fukaya, T. and Kato, K.A Formulation of Conjectures on p-adic Zeta Functions in Non-commutative Iwasawa Theory. Proc. St. Petersburg Math. Soc., XII (2006), 185. Amer. Math. Soc. Transl. Ser. 2, 219 (Amer. Math. Soc., Providence, RI, 2006).Google Scholar
[12]Ghate, E.Adjoint L-values and primes of congruence for Hilbert modular forms. Compos. Math. 132 (2002), 243281.CrossRefGoogle Scholar
[13]Hida, H. and Tilouine, J.Anti-cyclotomic Katz p-adic L-functions and congruence modules. Ann. Sci. 'Ecole Norm. Sup 26 (1993), 189259.CrossRefGoogle Scholar
[14]Kato, K.K 1 of some non-commutative completed group rings. K-Theory 34 (2005), 99140.CrossRefGoogle Scholar
[15]Panchishkin, A. A.Non-Archimedean L-functions of Siegel and Hilbert Modular Forms, vol. 1471 of Lecture Notes in Mathematics, Springer-Verlag, 1991.CrossRefGoogle Scholar
[16]Shimura, G.Special values of the zeta functions associated with hilbert modular forms. Duke Math. J. 45 (1978).CrossRefGoogle Scholar
[17]Tate, J.Number Theoretic Background. In Automorphic forms, representations and L-functions. Proceedings of Symposia in Pure Mathematics, vol. 33 (American Mathematical Society, 1979), pp. 326.CrossRefGoogle Scholar