Published online by Cambridge University Press: 24 October 2008
1. Let K1, K2, K3 be three conjugate* cubic algebraic number fields, of which we shall take K1 to be real and K2, K3 to be complex conjugate. Let ωi1, ωi2, ωi3 the conjugate basis for the integers of Ki. Write
so that ξi runs through the integers of Ki as the xj run independently through the rational integers, and the ξi (i = 1, 2, 3) are conjugate. The determinant of the ξi, regarded as linear forms in the xj, is ± √d, where d is the common discriminant of the fields.