Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:16:01.244Z Has data issue: false hasContentIssue false

On generation of the root lattice by roots

Published online by Cambridge University Press:  12 February 2007

SIMON M. GOODWIN*
Affiliation:
School of Mathematics, University of Birmingham, Birmingham, B15 2TT. e-mail: goodwin@maths.bham.ac.uk

Abstract

Let Φ be a root system and let Γ ⊆ Φ. In this short paper we prove that Γ contains a -basis of the lattice that it generates.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Borel, A. and Siebenthal, J. de. Les sous-groupes fermé de rank maximum des groupes de Lie clos. Comment. Math. Helv. 23 (1949), 200221.CrossRefGoogle Scholar
[2] Bourbaki, N.. Groupes et Algèbres de Lie (Hermann, 1975), Chapitres 4, 5 et 6.Google Scholar
[3] Dynkin, E. B.. Semisimple subalgebras of semisimple Lie algebras. Trans. Amer. Math. Soc. (2) 6 (1957), 111244.Google Scholar
[4] Goodwin, S. M.. On the conjugacy classes in maximal unipotent subgroups of simple algebraic groups. Transform. Groups 11, no. 1 (2006), 5176.CrossRefGoogle Scholar
[5] Goodwin, S. M.. Counting conjugacy classes in Sylow p-subgroups of Chevalley groups. J. Pure Appl. Algebra, to appear (2006).Google Scholar