Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T13:31:34.534Z Has data issue: false hasContentIssue false

Schwarzian derivative criteria for valence of analytic and harmonic mappings

Published online by Cambridge University Press:  01 September 2007

MARTIN CHUAQUI
Affiliation:
Facultad de Matemáticas, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile email: mchuaqui@mat.puc.cl
PETER DUREN
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109, U.S.A. email: duren@umich.edu
BRAD OSGOOD
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, California 94305, U.S.A. email: osgood@ee.stanford.edu

Abstract

For analytic functions in the unit disk, general bounds on the Schwarzian derivative in terms of Nehari functions are shown to imply uniform local univalence and in some cases finite and bounded valence. Similar results are obtained for the Weierstrass–Enneper lifts of planar harmonic mappings to their associated minimal surfaces. Finally, certain classes of harmonic mappings are shown to have finite Schwarzian norm.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahlfors, L. V.. Cross-ratios and Schwarzian derivatives in Rn. Complex Analysis: Articles dedicated to Albert Pfluger on the occasion of his 80th birthday (Hersch, J. and Huber, A., editors), (Birkhäuser Verlag, 1988), pp. 115.Google Scholar
[2]Beesack, P. R. and Schwarz, B.. On the zeros of solutions of second-order linear differential equations. Canad. J. Math. 8 (1956), 504–515.CrossRefGoogle Scholar
[3]Chuaqui, M., Duren, P. and Osgood, B.. The Schwarzian derivative for harmonic mappings. J. Analyse Math. 91 (2003), 329351.CrossRefGoogle Scholar
[4]Chuaqui, M., Duren, P. and Osgood, B.. Univalence criteria for lifts of harmonic mappings to minimal surfaces. J. Geom. Analysis 17 (2007), 4974.CrossRefGoogle Scholar
[5]Chuaqui, M., Duren, P. and Osgood, B.. Schwarzian derivatives and uniform local univalence. Comput. Methods Funct. Theory 8 (2008), 2134.CrossRefGoogle Scholar
[6]Chuaqui, M. and Gevirtz, J.. Simple curves in Rn and Ahlfors' Schwarzian derivative. Proc. Amer. Math. Soc. 132 (2004), 223230.CrossRefGoogle Scholar
[7]Chuaqui, M. and Osgood, B.. Finding complete conformal metrics to extend conformal mappings. Indiana Univ. Math. J. 47 (1998), 12731292.CrossRefGoogle Scholar
[8]Duren, P. L.. Univalent Functions (Springer–Verlag, 1983).Google Scholar
[9]Duren, P.. Harmonic Mappings in the Plane (Cambridge University Press, 2004).CrossRefGoogle Scholar
[10]Gehring, F. W. and Pommerenke, Ch.. On the Nehari univalence criterion and quasicircles. Comment. Math. Helv. 59 (1984), 226242.CrossRefGoogle Scholar
[11]Hille, E.. Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc. 55 (1949), 552553.CrossRefGoogle Scholar
[12]Kamke, E.. Differentialgleichungen: Lösungsmethoden und Lösungen, Band 1: Gewöhnliche Differentialgleichungen (3. Auflage, Becker & Erler, 1944) (reprinted by Chelsea Publishing Co., 1948).Google Scholar
[13]Kraus, W.. Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung. Mitt. Math. Sem. Giessen 21 (1932), 128.Google Scholar
[14]Minda, D.. Contemp. Math. 38 (1985), 4352.CrossRefGoogle Scholar
[15]Nehari, Z.. The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55 (1949) 545551.CrossRefGoogle Scholar
[16]Nehari, Z.. Some criteria of univalence. Proc. Amer. Math. Soc. 5 (1954), 700704.CrossRefGoogle Scholar
[17]Nehari, Z.. Univalence criteria depending on the Schwarzian derivative. Illinois J. Math. 23 (1979), 345351.CrossRefGoogle Scholar
[18]Overholt, M.. Linear problems for the Schwarzian derivative. Ph.D. thesis, University of Michigan (1987).Google Scholar
[19]Pokornyi, V. V.. On some sufficient conditions for univalence. Dokl. Akad. Nauk SSSR 79 (1951), 743746 (in Russian).Google Scholar
[20]Pommerenke, Ch.. Linear-invariante Familien analytischer Funktionen I. Math. Annalen 155 (1964), 108154.CrossRefGoogle Scholar
[21]Schwarz, B.. Complex nonoscillation theorems and criteria of univalence. Trans. Amer. Math. Soc. 80 (1955), 159186.CrossRefGoogle Scholar