Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-16T03:00:35.461Z Has data issue: false hasContentIssue false

A uniform Kadec-Klee property for symmetric operator spaces

Published online by Cambridge University Press:  24 October 2008

P. G. Dodds
Affiliation:
Information Science and Technology, The Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia
T. K. Dodds
Affiliation:
Information Science and Technology, The Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia
P. N. Dowling
Affiliation:
Mathematics and Statistics, Miami University, Oxford, OH 45056, USA
C. J. Lennard
Affiliation:
Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
F. A. Sukochev
Affiliation:
Department of Mathematics, Tashkent State University, Vuzgorodok, 700095, Tashkent, Uzbekistan

Abstract

We show that if a rearrangement invariant Banach function space E on the positive semi-axis satisfies a non-trivial lower q-estimate with constant 1 then the corresponding space E(M) of τ-measurable operators, affiliated with an arbitrary semi-finite von Neumann algebra M equipped with a distinguished faithful, normal, semi-finite trace τ, has the uniform Kadec-Klee property for the topology of local convergence in measure. In particular, the Lorentz function spaces Lq, p and the Lorentz-Schatten classes Cg, p have the UKK property for convergence locally in measure and for the weak-operator topology, respectively. As a partial converse, we show that if E has the UKK property with respect to local convergence in measure then E must satisfy some non-trivial lower q-estimate. We also prove a uniform Kadec-Klee result for local convergence in any Banach lattice satisfying a lower q-estimate.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ar] Arazy, J.. More on convergence in unitary matrix spaces. Proc. Amer. Math. Soc. 83 (1981), 4448.Google Scholar
[Be1] Besbes, M.. Points fixes des contractions définies sur un convexe L 0-fermé de L 1. C.R. Acad. Sci. Paris, Série I 311 (1990), 243246.Google Scholar
[Be2] Besbes, M.. Points fixes dans les espaces des operateurs nucleaires. Bull. Australian Math. Soc. 46 (1992), 287294.CrossRefGoogle Scholar
[BDDL] Besbes, M., Dilworth, S. J., Dowling, P. N. and Lennard, C. J.. New convexity and fixed point properties in Hardy and Lebesgue–Bochner spaces. J. Fund. Anal. 119 (1994), 340357.CrossRefGoogle Scholar
[BM] Brodskiĭ, M. S. and Mil'man, D. P.. On the center of a convex set. Dokl. Akad. Nauk. SSSR(N.S.) 59 (1948), 837840.Google Scholar
[Br] Browder, F. E.. Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 10411044.CrossRefGoogle Scholar
[CDLT] Carothers, N. L., Dilworth, S. J., Lennard, C. J. and Trautman, D. A.. A fixed point property for the Lorentz spae Lp,1(μ). Indiana Univ. Math. J. 40 (1991), 345352.CrossRefGoogle Scholar
[Cr] Creekmore, J.. Type and cotype in Lorentz Lpq spaces. Indag.Math. 43 (1981), 145152.CrossRefGoogle Scholar
[CKS] Chi'lin, V. I., Krygin, A. V. and Sukochev, F. A.. Uniform and local uniform convexity of symmetric spaces of measurable operators. Dep VINITI N5620–B90(1990) 24 pp. (In Russian).Google Scholar
[CS] Chi'lin, V. I. and Sukochev, F. A.. Convergence in measure in admissible non-commutative symmetric spaces. Izv. Yysš Učeb. Zaved 9 (1990), 6390 (In Russian).Google Scholar
[DGK] Dilworth, S. J., Girardi, M. and Kutzarova, D.. Banach spaces which admit a norm with the uniform Kadec-Klee property, preprint.Google Scholar
[DH] Dilwohth, S. J. and Hsu, Y. P.. The uniform Kadec-Klee property for the Lorentz spaces Lw,1. J. Austral. Math. Soc. (to appear).Google Scholar
[DDP1] Dodds, P. G., Dodds, T. K. and De Pagter, B.. Non-commutative Banach function spaces. Math. Z. 201 (1989), 583597.CrossRefGoogle Scholar
[DDP2] Dodds, P. G., Dodds, T. K. and De Pagter, B.. Non-commutative Köthe duality. Trans. Amer. Math. Soc. (to appear).Google Scholar
[DL1] Dowling, P. N. and Lennard, C. J.. Kadec-Klee properties of vector-valued Hardy spaces. Math. Proc. Camb. Phil. Soc. 111 (1992), 535544.Google Scholar
[DL2] Dowling, P. N. and Lennard, C. J.. On uniformly H-convex complex quasi-Banach spaces. Bull. des Sci. Math. (to appear).Google Scholar
[DL3] Dowling, P. N. and Lennard, C. J.. Uniform Kadec-KIee-Huff properties of vector-valued Hardy spaces. Math. Proceedings Cambridge Phil. Soc. 114 (1993), 2530.CrossRefGoogle Scholar
[DS] Van Dulst, D. and Sims, B.. Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK). In Banach theory and its applications, Proceedings, Bucharest, Lecture Notes in Math. vol. 991 (Springer-Verlag, 1983), pp. 3543.Google Scholar
[DV] Van Dulst, D. and De Valk, V.. (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces. Can. J. Math. 38 (1986) 728750.CrossRefGoogle Scholar
[Fa] Fack, T.. Sur la notion de valeur caractéristique. J. Operator Theory 7 (1982), 307333.Google Scholar
[FK] Fack, T. and Kosaki, H.. Generalized s-numbers of τ-measurable operators. Pacific J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[Fr] Fremlin, D. H.. Stable subspaces of L 1+L . Math. Proc. Camb. Philos. Soc. 64 (1968), 625643.CrossRefGoogle Scholar
[GK] Gohberg, I. C. and Krein, M. G.. Introduction to the theory of non-selfadjoint operators. Translations of Mathematical Monographs, vol. 18, (American Math. Soc., 1969).Google Scholar
[GM] Gohberg, I. C. and Markus, A. S.. Some relations between eigenvalues and matrix elements of linear operators. Mat. Sb. 64 (1964), 481496; English transl. Amer. Math. Soc. Transl. 52 (1966), 201216.Google Scholar
[Hs] Hsu, Y. P.. The lifting of the UKK property from E to CE, preprint.Google Scholar
[HK] Hudzik, H. and Kamińska, A.. Monotonicity properties of Lorentz spaces, preprint.Google Scholar
[Hu] Huff, R.. Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 743749.CrossRefGoogle Scholar
[IP] Istraˇţescu, V. I. and Partington, J. R.. On nearly uniformly convex and k-uniformly convex spaces. Math. Proc. Camb. Phil. Soc. 95 (1984), 325327.CrossRefGoogle Scholar
[Kh] Khamsi, M. A.. On uniform Opial Condition and uniform Kadec-Klee property in Banach and metric spaces. J. Nonlinear Anal.: Th. Meth. Appl. (to appear).Google Scholar
[Ki1] Kirk, W. A.. A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 10041006.Google Scholar
[Ki2] Kirk, W. A.. An abstract fixed point theorem for nonexpansive mappings. Proc. Amer. Math. Soc. 82 (1981), 640642.Google Scholar
[KPS] Krein, S. G., Petunin, Ju. I. and Semenov, E. M.. Interpolation of linear operators. Translations of Mathematical Monographs, vol. 54, (American Math. Soc., 1982).Google Scholar
[KL] Kutzarova, D. and Landes, T.. Nearly uniform convexity of infinite direct sums. Indiana Univ. Math. J. 41 (1992), 915926.Google Scholar
[LM] Lau, A. T. and Mah, P. F.. Normal structure in dual Banach spaces associated with a locally compact group. Trans. Amer. Math. Soc. 310 (1988), 341353.CrossRefGoogle Scholar
[LMÜ] Lau, A. T., Mah, P. F. and Ülger, A.. Fixed point property and normal structure for Banach spaces associated to locally compact groups, preprint.Google Scholar
[Le1] Lennard, C.. C1 is uniformly Kadec-Klee. Proc. Amer. Math. Soc. 109 (1990), 7177.Google Scholar
[Le2] Lennard, C.. A new convexity property that implies a fixed point property for L 1. Studia Math. 100 (1991), 95108.CrossRefGoogle Scholar
[Le3] Lennard, C.. Operators and geometry of Banach spaces, Ph.D. Thesis, Kent State University, 1988.Google Scholar
[LT] Lindenstrauss, J. and Tzafriri, L.. Classical Banach spaces II, function spaces (Springer-Verlag, 1979).Google Scholar
[Mc] McCarthy, C. A.. cp. Israel J. Math. 5 (1967), 249271.CrossRefGoogle Scholar
[Me] Meyer-Nieberg, P.. Banach Lattices (Springer-Verlag, 1991).Google Scholar
[Ne] Nelson, E.. Notes on non-commutative integration. J. Funct. Anal. 15 (1974), 103116.CrossRefGoogle Scholar
[Ov] Ovcinnikov, V. I.. s-numbers of measurable operators. Funktsional'nyi Analiz i Ego Prilozheniya 4 (1970), 7885 (Russian).Google Scholar
[Pa] Partington, J. R.. On nearly uniformly convex Banach spaces. Math. Proc. Cambridge Phil. Soc. 93 (1983), 127129.CrossRefGoogle Scholar
[Si] Simon, B.. Convergence in trace ideals. Proc. Amer. Math. Soc. 83 (1981), 3943.Google Scholar
[Su] Sukochev, F. A.. On the uniform Kadec-Klee property. International Conference dedicated to the 100th birthday of S. Banach, Lwow, 1992.Google Scholar
[Te] Terp, M.. Lp-spaces associated with von Neumann algebras. Notes, Copenhagen University (1981).Google Scholar
[X] Xu, Q.. Analytic functions with values in lattices and symmetric spaces of measurable operators. Math. Proc. Camb. Phil. Soc. 109 (1991), 541563.Google Scholar