No CrossRef data available.
Article contents
Vector bundles and complex polarizations
Published online by Cambridge University Press: 24 October 2008
Abstract
This paper discusses the local and global geometry of coisotropic foliations and complex polarizations on symplectic manifolds and draws attention to an analogy between coisotropic foliations and Hermitian vector bundles, in which connections and characteristic classes are modelled by objects in symplectic geometry.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 92 , Issue 3 , November 1982 , pp. 489 - 509
- Copyright
- Copyright © Cambridge Philosophical Society 1982
References
REFERENCES
(1)Guillemin, V. and Sternberg, S.Geometric asymptotics, Mathematical Surveys, vol. 14 (American Mathematical Society, Providence, Rhode Island, 1977).CrossRefGoogle Scholar
(3)Gunning, R. C.Lectures on Riemann surfaces, Princeton Mathematical Notes (Princeton University Press, Princeton, New Jersey, 1966).Google Scholar
(5)Kirillov, A. A.Elements of the theory of representations (Springer, Berlin, 1976).CrossRefGoogle Scholar
(6)Kostant, B. In Lectures in modern analysis, vol. III, ed. Taam, C. T., Lecture Notes in Mathematics, vol. 170 (Springer, Berlin, 1970).Google Scholar
(7)Kostant, B. In Géométrie symplectique et physique mathématique, ed. Souriau, J.-M. (CNRS, Paris, 1974).Google Scholar
(9)Śniatycki, J.Geometric quantization and quantum mechanics. Applied Mathematical Sciences, vol. 30 (Springer, New York, 1980).CrossRefGoogle Scholar
(12)Treves, F.Introduction to pseudodifferential and Fourier integral operators, vol. 2 (Plenum, New York, 1980).CrossRefGoogle Scholar