Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T02:25:11.836Z Has data issue: false hasContentIssue false

Abstract Köthe Spaces. I

Published online by Cambridge University Press:  24 October 2008

D. H. Fremlin
Affiliation:
Trinity College, Cambridge

Extract

The purpose of this paper and the next is to demonstrate that the ‘perfect Riesz spaces’ of (1) are an effective abstraction of the ‘espaces de Köthe’ of (2). I shall follow the ideas of (1), with certain changes in notation:

If L is a Riesz space and x, yL, let us denote sup (x, y) by xy and inf (x, y) by xy. I shall use the convenient if informal notation xr↓ ((1), section 16·1) and shall in this usage assume that 0 ∈ {r} and that x0xτ for all τ. A set AL is solid if xA and |y| ≤ |x| together imply that yA; A is then balanced. The solid hull of A is the set {y: ∃ xA, |y| ≤ |x|}; this is the smallest solid set containing A. An ‘ideal’ ((1), section 17) is then a solid subspace.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Luxemburg, W. A. J. and Zaanen, A. C.Notes on Banach function spaces. Nederl. Akad. Wetensch Proc. Ser. A, §§ 16–21 (Note VI), 66 (1963), 655668. §§ 26–28 (Note VIII), 67 (1964), 104–119.CrossRefGoogle Scholar
(2)Dieudonné, J.Sur les Espaces de Köthe. J. d'Anal. Math. 1 (1951), 81115.CrossRefGoogle Scholar
(3)Köthe, G.Topologische Lineare Räume (Springer-Verlag, 1960).CrossRefGoogle Scholar
(4)Bourbaki, N.Eléments de Mathématique, VI, Intégration, chap. II, Espaces de Riesz. Actualités Scientifiques et Industrielles no. 1175 (Hermann et Cie, 1952).Google Scholar