Published online by Cambridge University Press: 24 October 2008
The purpose of this paper and the next is to demonstrate that the ‘perfect Riesz spaces’ of (1) are an effective abstraction of the ‘espaces de Köthe’ of (2). I shall follow the ideas of (1), with certain changes in notation:
If L is a Riesz space and x, y ∈ L, let us denote sup (x, y) by x ∧ y and inf (x, y) by x ∧ y. I shall use the convenient if informal notation xr↓ ((1), section 16·1) and shall in this usage assume that 0 ∈ {r} and that x0 ≥ xτ for all τ. A set A ⊆ L is solid if x ∈ A and |y| ≤ |x| together imply that y ∈ A; A is then balanced. The solid hull of A is the set {y: ∃ x ∈ A, |y| ≤ |x|}; this is the smallest solid set containing A. An ‘ideal’ ((1), section 17) is then a solid subspace.