Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T18:41:23.723Z Has data issue: false hasContentIssue false

Coupled wave equations for propagation in inhomogeneous compressible plasmas

Published online by Cambridge University Press:  24 October 2008

R. Burman
Affiliation:
Department of Physics, Victoria University of Wellington, New Zealand

Abstract

This paper deals with wave propagation in inhomogeneous compressible electron plasmas. The waves are described by Maxwell's equations coupled to the linearized single-fluid equations of hydrodynamics. Coupled wave equations are derived which describe the propagation of coupled electromagnetic and electron acoustic waves. Results are obtained for generally inhomogeneous plasmas and are specialized to planar and cylindrically stratified media. Particular attention is given to the planar case and several approximate techniques for treating the equations are discussed. The fields in a region of coupling are investigated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Oster, L.Rev. Mod. Phys. 32 (1960), 141168.CrossRefGoogle Scholar
(2)Hoh, F. C.Phys. Rev. 133 (1964), A 1016A 1020.CrossRefGoogle Scholar
(3)Fejer, J. A.Phys. Fluids 7 (1964), 439445.CrossRefGoogle Scholar
(4)Parker, J. V., Nickel, J. C. and Gould, R. W.Phys. Fluids 7 (1964), 14891500.Google Scholar
(5)Yadavalli, S. V.Internat. J. Electronics 18 (1965), 122.CrossRefGoogle Scholar
(6)Musal, H. M. JrProc. IEEE 53 (1965), 21242125.CrossRefGoogle Scholar
(7)Felsen, L. B.Electronics Letters 2 (1966), 34.CrossRefGoogle Scholar
(8)Rao, S. S. and Unz, H.Proc. IEEE 54 (1966), 407408.CrossRefGoogle Scholar
(9)Raemer, H. R.Canad. J. Phys. 44 (1966), 10471065.CrossRefGoogle Scholar
(10)Burman, R.Proc. IEEE 54 (1966), 10691070.CrossRefGoogle Scholar
(11)Burman, R.Electronics Letters 2 (1966), 219220.CrossRefGoogle Scholar
(12)Friedlander, F.G. Sound pulses, see chapter 1. (Cambridge University Press; London, 1958).Google Scholar
(13)Budden, K. G.Radio waves in the ionosphere (Cambridge University Press; London, 1961).Google Scholar
(14)Brekhovskikh, L. M.Waves in layered media (Academic Press; London and New York, 1960).Google Scholar
(15)Wait, J. R.Electromagnetic waves in stratified media (Pergamon Press; Oxford, 1962).Google Scholar
(16)Ginzberg, V. L.The propagation of electromagnetic waves in plasmas (Pergamon Press; Oxford, 1964).Google Scholar
(17)Ewing, W. M., Jardetzky, W. S. and Press, F.Elastic waves in layered media (McGraw-Hill; New York, 1957).CrossRefGoogle Scholar
(18)Gupta, R. N.Geophysics 30 (1965), 122132.CrossRefGoogle Scholar
(19)Seshadri, S. R.IEEE Trans. Microwave Theory and Techniques MTT-11 (1963), 3950.CrossRefGoogle Scholar
(20)Bremmer, H. In Handbuch der physik, edited by Flügge, S., vol. 16, pp. 423639, see pp. 550–551 (Springer-Verlag; Berlin, 1958).Google Scholar
(21)Budden, K. G. and Clemmow, P. C.Proc. Cambridge Philos. Soc. 53 (1957), 669682.CrossRefGoogle Scholar
(22)Burman, R.IEEE Trans. Antennas and Propagation AP-13 (1965), 646647.CrossRefGoogle Scholar
(23)Burman, R.Proc. IEEE 54 (1966), 7475.CrossRefGoogle Scholar
(24)Richards, P. I.Manual of mathematical physics (Pergamon Press; London, 1959).Google Scholar
(25)Kamke, E.Differentialgleichungen, Lösungsmethoden und Lösungen (Chelsea Publ. Co.; New York, 1948).Google Scholar
(26)Morse, P. M. and Feshbach, H.Methods of theoretical physics, see pp. 810811 (McGraw-Hill; New York, 1953).Google Scholar
(27)Heading, J.J. Res. NBS (Radio Propagation) 67D (1963), 6577.Google Scholar
(28)Petit Bois, G.Tables of indefinite integrals, see pp. 141143 (Dover; New York, 1961).Google Scholar