Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T01:02:20.168Z Has data issue: false hasContentIssue false

The Euler number of certain primitive Calabi–Yau threefolds

Published online by Cambridge University Press:  01 January 2000

MEI-CHU CHANG
Affiliation:
Department of Mathematics, University of California, Riverside, U.S.A. e-mail: mcc@math.ucr.edu
HOIL KIM
Affiliation:
Topology and Geometry Research Center, Kyungpook University, Taegu, Korea; e-mail: hikim@gauss.kyungpook.ac.kr

Abstract

Recently Calabi–Yau threefolds have been studied intensively by physicists and mathematicians. They are used as physical models of superstring theory [Y] and they are one of the building blocks in the classification of complex threefolds [KMM]. These are three dimensional analogues of K3 surfaces. However, there is a fundamental difference as is to be expected. For K3 surfaces, the moduli space N of K3 surfaces is irreducible of dimension 20, inside which a countable number of families Ng with g [ges ] 2 of algebraic K3 surfaces of dimension 19 lie as a dense subset. More explicitly, an element in Ng is (S, H), where S is a K3 surface and H is a primitive ample divisor on S with H2 = 2g − 2. For a generic (S, H), Pic (S) is generated by H, so that the rank of the Picard group of S is 1. A generic surface S in N is not algebraic and it has Pic (S) = 0, but dim N = h1(S, TS) = 20 [BPV]. It is quite an interesting problem whether or not the moduli space M of all Calabi–Yau threefolds is irreducible in some sense [R]. A Calabi–Yau threefold is algebraic if and only if it is Kaehler, while every non-algebraic K3 surface is still Kaehler. Inspired by the K3 case, we define Mh,d to be {(X, H)[mid ]H3 = h, c2(X) · H = d}, where H is a primitive ample divisor on a smooth Calabi–Yau threefold X. There are two parameters h, d for algebraic Calabi–Yau threefolds, while there is only one parameter g for algebraic K3 surfaces. (Note that c2(S) = 24 for every K3 surface.) We know that Ng is of dimension 19 for every g and is irreducible but we do not know the dimension of Mh,d and whether or not Mh,d is irreducible. In fact, the dimension of Mh,d = h1(X, TX), where (X, H) ∈ Mh,d. Furthermore, it is well known that χ(X) = 2 (rank of Pic (X) − h1(X, TX)), where χ(X) is the topological Euler characteristic of X. Calabi–Yau threefolds with Picard rank one are primitive [G] and play an important role in the moduli spaces of all Calabi–Yau threefolds. In this paper we give a bound on c3 of Calabi–Yau threefolds with Picard rank 1.

Type
Research Article
Copyright
The Cambridge Philosophical Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)