Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T13:35:58.023Z Has data issue: false hasContentIssue false

Lehmer's Question, Knots and Surface Dynamics

Published online by Cambridge University Press:  01 November 2007

DANIEL S. SILVER
Affiliation:
Department of Mathematics and Statistics University of South Alabama, Mobile, AL 36688, U.S.A.
SUSAN G. WILLIAMS*
Affiliation:
Department of Mathematics and Statistics University of South Alabama, Mobile, AL 36688, U.S.A.
*
Both authors partially supported by NSF grant DMS-0304971.

Abstract

Lehmer's question is equivalent to one about generalized growth rates of Lefschetz numbers of iterated pseudo-Anosov surface homeomorphisms. One need consider only homeomorphisms that arise as monodromies of fibered knots in lens spaces L(n, 1), n > 0. Lehmer's question for Perron polynomials is equivalent to one about generalized growth rates of words under free group endomorphisms.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Birman, J. S.. Braids, links and mapping class groups. Ann. of Math. Stud. 82 (1974).Google Scholar
[2]Bleiler, S. A. and Casson, A. J.. Automorphisms of Surfaces after Nielsen and Thurston. London Math. Soc. Student Texts 9 (Cambridge University Press, 1988).Google Scholar
[3]Bowen, R.. Entropy and the Fundamental Group (Springer LNM 668 (1978), 2129).Google Scholar
[4]Bowen, R. and Lanford, O.. Zeta functions of restrictions of the shift transformation, in Global Analysis. Proc. Symp. Pure Math. 14 (1968).Google Scholar
[5]Boyd, D. W.. Reciprocal polynomials having small measure. Math. Comp. 35 (1980), 13611377.Google Scholar
[6]Boyd, D. W.. Speculations concerning the range of Mahler's measure. Canad. Math. Bull. 24 (1981), 453469.Google Scholar
[7]Boyd, D. W.. Reciprocal polynomials having small Mahler measure II. Math. Comp. 53 (1989), 355357.CrossRefGoogle Scholar
[8]Callahan, P. J., Dean, J. C. and Weeks, J. R.. The simplest hyperbolic knots. J. Knot Theory Ramifications 8 (1999), 279297.Google Scholar
[9]Dienes, P.. The Taylor Series (Dover Publications, 1957).Google Scholar
[10]Dold, A.. Lectures on Algebraic Topology, 2nd edition (Springer Verlag, 1980).Google Scholar
[11]Everest, G., Poorten, A. van der, Shparlinski, I. and Ward, T.. Recurrence Sequences (American Mathematical Society, 2003).Google Scholar
[12]Farb, B., Leininger, C. and Margalit, D.. In preparation.Google Scholar
[13]Fathi, A. and Laudenbach, F.. Les feuilletages mesurés. Astérisque 66–67 (1979), 7189.Google Scholar
[14]Fathi, A. and Shub, M.. Some dynamics of pseudo-Anosov diffeomorphisms. Astérisque 66–67 (1979), 181207.Google Scholar
[15]Fel'shtyn, A.. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Mem. Amer. Math. Soc. 699 (2000).Google Scholar
[16]Franks, J. M.. Homology and dynamical systems. \itConf. Board of the Math. Sciences Regional Conf. Series in Math. 49 (Amer. Math. Soc., 1982).Google Scholar
[17]Fried, D.. Finitely presented dynamical systems. Ergodic Theory Dynam. Systems 7 (1987), 489507.Google Scholar
[18]Hadamard, J.. Essai sur l'étude des fonctions données par leurs développements de Taylor. J. de Mathematiques \rm (4) 8 (1892), 101186.Google Scholar
[19]Ham, J-Y. and W. T. Song. The minimum dilatation of pseudo-Anosov 5-braids. Preprint, 2005, arXiv: math.GT/506295.Google Scholar
[20]Handel, M.. The forcing partial order on the three times punctured disk. Ergodic Theory Dynam. Systems 17 (1997), 593610.Google Scholar
[21]Hosokawa, F.. On ∇-polynomials of links. Osaka Math. J. 10 (1958), 273282.Google Scholar
[22]Jiang, B. and Guo, J.. Fixed points of surface diffeomorphisms. Pacific J. Math. 160 (1993), 6789.Google Scholar
[23]Kanenobu, T.. Module d'Alexander des noeuds fibrés et polynôme de Hosokawa des lacements fibrés. Math. Sem. Notes Kobe Univ. 9 (1981), 7584.Google Scholar
[24]Kawauchi, A.. A Survey of Knot Theory (Birkhäuser Verlag, 1996).Google Scholar
[25]Kelly, M. R.. A bound on the fixed-point index for surface mappings. Ergodic Theory Dynam. Systems 17 (1997), 13931408.Google Scholar
[26]Kim, K. H., Ormes, N. S. and Roush, F. W.. The spectra of nonnegative integer matrices via formal power series. J. Amer. Math. Soc. 13 (2000), 773806.Google Scholar
[27]Kirby, R.. Problems in low-dimensional topology; Geometric Topology (Kazez, W. H., ed.), Studies in Advanced Mathematics (Amer. Math. Soc., 1997).Google Scholar
[28]Laudenbach, F.. Construction de difféomorphismes pseudo-Anosov. Astérisque 66–67 (1979), 243250.Google Scholar
[29]Laudenbach, F.. La théorie de Thurston sur les surfaces a bord. Astérisque 66–67 (1979), 209224.Google Scholar
[30]Lehmer, D. H.. Factorization of certain cyclotomic functions. Annals of Math. 34 (1933), 461479.Google Scholar
[31]Leininger, C. J.. On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number. Geom. Topol. 8 (2004), 13011359 (electronic).CrossRefGoogle Scholar
[32]Lyndon, R. C. and Schupp, P. E.. Combinatorial Group Theory (Springer-Verlag, 1977).Google Scholar
[33]Manning, A.. Axiom A diffeomorphisms have rational zeta function. Bull. London Math. Soc. 3 (1971), 215220.Google Scholar
[34]Matsuoka, T.. Braids of periodic points and a 2-dimensional analogue of Sharkovskii's ordering. Dynamical Systems and Nonlinear Oscillations (Kyoto, 1985) 58–72. World Sci. Adv. Ser. Dynam. Systems 1 (World Scientific Publishing, 1986).Google Scholar
[35]McMullen, C. T.. Polynomial invariants for fibered 3-manifolds and Teichmuller geodesics for foliations. Ann. Sci. Ecole Norm. Sup. 33 (2000), 519560.Google Scholar
[36]Minc, H.. Nonnegative Matrices (Wiley/Interscience, 1988).Google Scholar
[37]Mossinghoff, M. J.. Polynomials with small Mahler measure. Math. Comp. 67 (1998), 16971705.CrossRefGoogle Scholar
[38]Pólya, G. and Szegø, G.. Problems and Theorems in Analysis II (Springer-Verlag, 1976).Google Scholar
[39]Ray, G. A.. A locally parameterized version of Lehmer's problem. In Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Gautschi, W., ed.), Proc. Symp. Appl. Math. 48 (1994), 573–576.Google Scholar
[40]Rolfsen, D.. Knots and Links (Publish or Perish, 1976).Google Scholar
[41]Rykken, E.. Expanding factors for pseudo-Anosov homeomorphisms. Mich. Math. J. 46 (1999), 281296.Google Scholar
[42]Schmidt, K.. Dynamical Systems of Algebraic Origin (Birkhäuser Verlag, 1995).Google Scholar
[43]Silver, D. S. and Williams, S. G.. Mahler measure, links and homology growth. Topology 41 (2002), 979991.Google Scholar
[44]Silver, D. S. and Williams, S. G.. Mahler measure of Alexander polynomials. J. London Math. Soc. 69 (2004), 767782.Google Scholar
[45]Smyth, C. J.. On the product of the conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc. 3 (1971), 169175.Google Scholar
[46]Stallings, J. R.. Topologically unrealizable automorphisms of free groups. Proc. Amer. Math. Soc. 84 (1982), 2124.Google Scholar
[47]Thurston, W. P.. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. 6 (1982), 357381.Google Scholar
[48]Thurston, W. P.. The Geometry and Topology of 3-Manifolds (Lecture Notes, Princeton 1977. Revised version Princeton University Press, 1983).Google Scholar
[49]Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. 19 (1988), 417431.Google Scholar
[50]Turaev, V.. Introduction to Combinatorial Torsions (Birkhäuser Verlag, 2001).Google Scholar