Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T10:00:25.207Z Has data issue: false hasContentIssue false

McLain groups over arbitrary rings and orderings

Published online by Cambridge University Press:  24 October 2008

Manfred Droste
Affiliation:
Institut für Algebra, Technische Universität Dresden, 01062 Dresden, Germany
Rüdiger Göbel
Affiliation:
FB 6, Mathematik und Informatik, Universität GHS Essen, 45117 Essen, Germany

Extract

In 1954, McLain [M] applied some well-known arguments of linear algebra on triangular matrices to establish the existence of characteristically simple, locally finite p-groups, now known as McLain groups [Rob, pp. 347–349]. His groups, having a trivial centre, illustrated sharply the difference between finite and locally finite p-groups. The construction of McLain groups depends on the dense linear ordering (ℚ,≤) and a field Fp of p elements. It was immediately clear that the parameters Fp, ℚ of the McLain group G(Fp, ℚ) could be replaced by other linearly ordered, dense sets S and by other fields F without doing much harm to the construction. If F has characteristic 0, then G(F, S) is still locally nilpotent but torsion-free. Wilson [W] investigated G(Fp, S) for other orderings and Roseblade[R] deeply studied the automorphism group Aut G(Fp, S) in his dissertation at Cambridge in 1963.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AN]Adeleke, S. and Neumann., P. M.Primitive permutation groups with primitive Jordan sets J. London Math. Soc. (to appear).Google Scholar
[AGN]Andréka, H., Givant, S. and Nemeti, I.. The lattice of varieties of representable relation algebras (to appear).Google Scholar
[B]Baer, R.. Linear Algebra and Protective Geometry (Academic Press, 1952).Google Scholar
[Be]Behrendt, G.. Automorphism groups of posets containing no crowns. Ars Combinatoria 29A (1990), 233239.Google Scholar
[Bi]Birkhoff, G.. Sobre los grupos de automorfismos. Revista Union Mat. Argentina 11 (1946), 155157.Google Scholar
[BG]Böttinger, C. and Göbel, R.. Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings. J. Pure Appl. Algebra 76 (1991), 211241.Google Scholar
[C]Corner, A. L. S.. Endomorphism algebras of large modules with distinguished submodules. J. Algebra 11 (1969), 155185.CrossRefGoogle Scholar
[D1]Droste, M.. Structure of partially ordered sets with transitive automorphism groups (Memoirs Amer. Math. Soc. 334, 1985).CrossRefGoogle Scholar
[D2]Droste, M.. The existence of rigid measurable spaces. Topol. and its Applic. 31 (1989), 187195.Google Scholar
[DHM]Droste, M., Holland, W. C. and Macpherson, H. D.. Automorphism groups of infinite semilinear orders (II). Proc. London Math. Soc. (3) 58 (1989), 479494.Google Scholar
[DS]Droste, M. and Shortt, R.. Commutators in groups of order-preserving permutations. Glasgow Math. J. 33 (1991), 5559.Google Scholar
[DG1]Dugas, M. and Göbel, R.. Torsion-free nilpotent groups and E-modules. Arch. Math. 54 (1990), 340351.CrossRefGoogle Scholar
[DG2]Dugas, M. and Göbel, R.. Automorphism groups of torsion-free nilpotent groups of class two. Trans. Amer. Math. Soc. 332 (1992), 633646.CrossRefGoogle Scholar
[DG3]Dugas, M. and Göbel, R.. All infinite groups are Galois groups over any field. Trans. Amer. Math. Soc. 304 (1987), 355384.CrossRefGoogle Scholar
[DG4]Dugas, M. and Göbel, R.. On locally finite p-groups and a problem of Philip Hall's. J. of Algebra 159 (1993), 115138.Google Scholar
[DG5]Dugas, M. and Göbel, R.. Automorphism groups of fields. Manuscripta Mathematicae (to appear).Google Scholar
[EG]Ebert, R. and Göbel, R.. Carnot cycles in General Relativity. J. General Relativity and Gravitation 4 (1973), 375386.Google Scholar
[F]Falkenberg, H.. Die McLain–Gruppen über allgemeinen Ketten und ihre Automorphismengruppen. (Diplomarbeit, Universität Essen, 1993).Google Scholar
[G]Göbel, R.. Wie weit sind Moduln vom Satz von Krull–Remak–Schmidt entfernt? Jahresber. DMV 88 (1986), 1149.Google Scholar
[GM1]Göbel, R. and May, W.. Four submodules suffice for realizing algebras over commutative rings. J. Pure Appl. Algebra 55 (1990), 2943.Google Scholar
[GM2]Göbel, R. and May, W.. Endomorphism algebras of peak I-spaces over posets of infinite prinjective type, manuscript 1994.Google Scholar
[H]Hall, P.. Wreath powers and characteristically simple groups. Math. Proc. Cambridge Philos. Soc. 58 (1962), 170184.CrossRefGoogle Scholar
[He]Herstein, I. N.. Non commutative rings, Carus Mathematical monographs, vol. 15. Math. Association of America, 1968.Google Scholar
[K]Kueker, D. W.. Definability, automorphisms, and infinitary languages in: The Syntax and Semantics of Infinitary Languages (Barwise, K. J., ed.), Lecture Notes in Math. 72, pp. 152165 (Springer, 1968).CrossRefGoogle Scholar
[M]McLain, D. H.. A characteristically-simple group. Math. Proc. Cambridge Philos. Soc. 50 (1954), 641642.CrossRefGoogle Scholar
[P]Phillips, R. E.. Countably recognizable classes of groups. Rocky Mountain J. Math. 1 (1971), 489497.CrossRefGoogle Scholar
[Rob]Robinson, D. J. S.. A Course in the Theory of Groups, Springer Graduate Texts, vol. 80, 1980.Google Scholar
[R]Roseblade, J. E.. The automorphism group of McLain's characteristically simple group. Math. Zeit. 82 (1963), 267282.CrossRefGoogle Scholar
[T]Thomas, S.. Complete existentially closed locally finite groups. Arch. Math. 44 (1985), 97109.Google Scholar
[Wa]Warren, R.. The Structure of K–CS-transitive cycle-free partial orders. (Ph.D. thesis, University of Leeds, 1992).Google Scholar
[W]Wilson, J. S.. Groups with many characteristically simple subgroups. Math. Proc. Cambridge Philos. Soc. 86 (1979), 193197.CrossRefGoogle Scholar