Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T09:32:46.521Z Has data issue: false hasContentIssue false

Metrical Diophantine approximation for quaternions

Published online by Cambridge University Press:  01 December 2014

MAURICE DODSON
Affiliation:
Department of Mathematics, University of York, York, YO10 5DD.
BRENT EVERITT
Affiliation:
Department of Mathematics, University of York, York, YO10 5DD.

Abstract

Analogues of the classical theorems of Khintchine, Jarník and Jarník-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general ‘lim sup’ sets.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahlfors, L. V. Möbius transformations in several dimensions. Lecture Notes, School of Mathematics, University of Minnesota (1954).Google Scholar
[2]Arnol'd, V. I.Geometrical Methods in Ordinary Differential Equations (Springer-Verlag, 1983). Translated by Szücs, J.Google Scholar
[3]Beresnevich, V., Dickinson, D. and Velani, S. L.Measure theoretic laws for limsup sets. Mem. Amer. Math. Soc. 179 (846) (2006), 191.Google Scholar
[4]Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. 21 (1970), 111.CrossRefGoogle Scholar
[5]Beardon, A. F.The Geometry of Discrete Groups (Springer-Verlag, 1983).Google Scholar
[6]Beresnevich, V. V.A Groshev type theorem for convergence on manifolds. Acta Math. Hungar. 94 (2002), 99130.CrossRefGoogle Scholar
[7]Beresnevich, V. V., Bernik, V. I., Kleinbock, D. Y. and Margulis, G. A.Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds. Mosc. Math. J. 2 (2) (2002), 203225.Google Scholar
[8]Beresnevich, V. V., Dickinson, D. and Velani, S. L.Measure Theoretic Laws for Limsup Sets. Mem. Amer. Math. Soc. 179 (846) (2006), 191.Google Scholar
[9]Beresnevich, V. V. and Velani, S. L.A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. Math. 164 (2006), 971992.Google Scholar
[10]Beresnevich, V. V. and Velani, S. L.Ubiquity and a general logarithm law for geodesics. Sémin. Congr., 19 (2009), 2136. (Bugeaud, Y., Dal'bo, F., Druţu, C., eds.).Google Scholar
[11]Bernik, V. I. and Dodson, M. M.Metric Diophantine Approximation on Manifolds (Cambridge University Press, 1999).Google Scholar
[12]Bernik, V. I., Kleinbock, D. Y. and Margulis, G. A.Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. Internat. Math. Res. Notices. 3 (2001), 453485.Google Scholar
[13]Besicovitch, A. S.Sets of fractional dimensions (IV): on rational approximation to real numbers. J. London Math. Soc. 9 (1934), 126131.Google Scholar
[14]Bishop, C. J. and Jones, P. W.Hausdorff dimension and Kleinian groups. Acta Math. 111 (1997), 139.Google Scholar
[15]Borel, E.Sur un problème de probabilités aux fractions continues. Math. Ann. 72 (1912), 578584.Google Scholar
[16]Cassels, J. W. S.An Introduction to Diophantine Approximation (Cambridge University Press, 1957).Google Scholar
[17]Cassels, J. W. S., Ledermann, W., and Mahler, K.Farey section in k(i) and k(ρ). Philos. Trans. Roy. Soc. London. Ser. A. 243 (1951), 585626.Google Scholar
[18]Conway, J. H. and Smith, D. A.On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry (A. K. Peters, Natick, MA, 2003).Google Scholar
[19]Dani, S. G.Divergent trajectories of flows on homogeneous spaces and homogeneous Diophantine approximation. J. Reine Angew. Math. 359 (1985), 5589.Google Scholar
[20]Dani, S. G.On badly approximable numbers, Schmidt games and bounded orbits of flows. In Dodson, M. M. and Vickers, J. A. G., editors, Number Theory and Dynamical Systems of LMS Lecture Note Series, vol. 134 (Cambridge University Press, 1987) p. 6986.Google Scholar
[21]Dickinson, H. and Velani, S. L.Hausdorff measure and linear forms. J. Reine Angew. Math. 490 (1997), 136.Google Scholar
[22]Dodson, M. M.Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximation. J. Reine Angew. Math. 432 (1992), 6976.Google Scholar
[23]Dodson, M. M.Diophantine approximation, Khintchine's theorem, torus geometry and Hausdorff dimension. Sémin. Congr. 19 (2009), 119. (Bugeaud, Y., Dalbo, F., Druţu, C., eds.).Google Scholar
[24]Dodson, M. M. and Kristensen, S.Hausdorff dimension and Diophantine approximation. Fractal geometry and applications: a jubilee of Benôit Mandelbrot. Part 1, Proc. Symp. Pure Math. Amer. Math. Soc., Providence. 72 (2004), 305347. (Lapidus, Michel L., ed.).Google Scholar
[25]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika, 37 (1990), 5973.Google Scholar
[26]Falconer, K.The Geometry of Fractal Sets (Cambridge University Press, 1985).Google Scholar
[27]Falconer, K.Fractal Geometry (John Wiley, 1989).Google Scholar
[28]Federer, H.Geometric Measure Theory (Springer-Verlag, 1969).Google Scholar
[29]Ford, L. R.On the closeness of approach of complex rational fractions to a complex irrational number. Trans. Amer. Math. Soc. 27 (1925), 146154.Google Scholar
[30]Gallagher, P. X.Metric simultaneous Diophantine approximation II. Mathematika 12 (1965), 123127.Google Scholar
[31]Hardy, G. H. and Wright, E. M.An Introduction to the Theory of Numbers (Clarendon Press, 4th edition, 1960).Google Scholar
[32]Harman, G.Metric number theory. volume 18 of LMS Monographs New Series (Clarendon Press, 1998).Google Scholar
[33]Hurwitz, A.Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Math. Ann. 39 (1891), 279284.Google Scholar
[34]Hurwitz, A.Vorlesungen über die Zahlentheorie der Quaternionen (Julius Springer, Berlin, 1919).CrossRefGoogle Scholar
[35]Jarník, V. Zur metrischen theorie der Diophantischen approximationen. Prace Mat.-Fiz. (1928–9), pp. 91–106.Google Scholar
[36]Jarník, V.Diophantischen Approximationen und Hausdorffsches mass. Mat. Sbornik 36 (1929), 371382.Google Scholar
[37]Jarník, V.Über die simultanen diophantischen Approximationen. Math. Z. 33 (1931), 505543.Google Scholar
[38]Khintchine, A. I.Einige Sätze über kettenbruche, mit anwendungen auf die Theorie der Diophantischen approximationen. Math. Ann. 92 (1924), 115125.Google Scholar
[39]Khintchine, A. I.Zur metrischen Theorie der Diophantischen approximationen. Math. Z. 24 (1926), 706714.CrossRefGoogle Scholar
[40]Gallagher, P. X.Metric simultaneous Diophantine approximation II. Mathematika, 12 (1965), 123127.Google Scholar
[41]Hardy, G. H. and Wright, E. M.An Introduction to the Theory of Numbers (Clarendon Press, 4th edition, 1960).Google Scholar
[42]Harman, G.Metric number theory, volume 18 of LMS Monographs New Series (Clarendon Press, 1998).Google Scholar
[43]Hurwitz, A.Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Math. Ann. 39 (1891), 279284.Google Scholar
[44]Hurwitz, A.Vorlesungen über die Zahlentheorie der Quaternionen (Julius Springer, Berlin, 1919).Google Scholar
[45]Jarník, V. Zur metrischen Theorie der Diophantischen approximationen. Prace Mat.-Fiz. (1928–9), pp. 91–106.Google Scholar
[46]Jarník, V.Diophantischen Approximationen und Hausdorffsches mass. Mat. Sbornik 36 (1929), 371382.Google Scholar
[47]Jarník, V.Über die simultanen Diophantischen approximationen. Math. Z. 33 (1931), 505543.Google Scholar
[48]Khintchine, A. I.Einige Sätze über Kettenbruche, mit Anwendungen auf die Theorie der Diophantischen approximationen. Math. Ann. 92 (1924), 115125.Google Scholar
[49]Khintchine, A. I.Zur metrischen Theorie der Diophantischen approximationen. Math. Z. 24 (1926), 706714.Google Scholar
[50]Koksma, J. F.Diophantische Approximationen. Ergeb. Math. Grenzgeb (Springer, 1936).Google Scholar
[51]Kristensen, S., Thorn, R., and Velani, S. L.Diophantine approximation and badly approximable sets. Advances in Math. 203 (2006), 132169.Google Scholar
[52]Le Veque, W. J.Continued fractions and approximations I and II. Indag. Math. 14 (1952), 526545.Google Scholar
[53]Mahler, K.A problem of Diophantine approximation in quaternions. Proc. London Math. Soc. (2) 48 (1945), 435466.Google Scholar
[54]Mattila, P.Geometry of Sets and Measures in Euclidean space (Cambridge University Press, 1995).Google Scholar
[55]Nicholls, P. J.The ergodic theory of discrete groups, LMS Lecture Notes. vol. 143 (Cambridge University Press, 1989).Google Scholar
[56]Patterson, S. J.Diophantine approximation in Fuchsian groups. Phil. Trans. Roy. Soc. Lond. A. 262 (1976), 527563.Google Scholar
[57]Pollington, A. D. and Vaughan, R. C.The k-dimensional Duffin and Schaeffer conjecture. Mathematika. 37 (1990), 190200.Google Scholar
[58]Rankin, R. A.Diophantine approximation and the horocyclic group. Canad. J. Math. 9 (1957), 277290.Google Scholar
[59]Rogers, C. A.Hausdorff Measure (Cambridge University Press, 1970).Google Scholar
[60]Schmidt, A. L.Farey triangles and Farey quadrangles in the complex plane. Math. Scand. 21 (1967), 241295.Google Scholar
[61]Schmidt, A. L.Farey simplices in the space of quaternions. Math. Scand. 24 (1969), 3165.Google Scholar
[62]Schmidt, A. L.On the approximation of quaternions. Math. Scand. 34 (1974), 184186.Google Scholar
[63]Schmidt, A. L.Diophantine approximation of complex numbers. Acta Math. 134 (1975), 185.Google Scholar
[64]Schmidt, W. M.Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc. 110 (1964), 493518.Google Scholar
[65]Schmidt, W. M.On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 178199.Google Scholar
[66]Schmidt, W. M.Badly approximable systems of linear forms. J. Number Theory, 1 (1969), 139154.CrossRefGoogle Scholar
[67]Schmidt, W. M.Diophantine approximation. Lecture Notes in Mathematics. vol. 785 (Springer-Verlag, 1980).Google Scholar
[68]Series, C.The modular surface and continued fractions. J. Lond. Math. Soc. 31 (1985), 6980.Google Scholar
[69]Speiser, A.Über die Minima Hermitescher formen. J. Reine Angew. Math. 167 (1932), 8897.CrossRefGoogle Scholar
[70]Sprindžuk, V. G.Metric Theory of Diophantine Approximations (John Wiley, 1979). (Translated by Silverman, R. A.)Google Scholar
[71]Sullivan, D.Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149 (1982), 215237.Google Scholar
[72]Vulakh, L. Ya.On Hurwitz constants for Fuchsian groups. (English summary). Canad. J. Math. 49 (1997), 405416.Google Scholar