Published online by Cambridge University Press: 15 April 2015
We study solvability of convolution equations for functions with discrete support in $\mathbf{R}^{n}$, a special case being functions with support in the integer points. The more general case is of interest for several grids in Euclidean space, like the body-centred and face-centred tessellations of 3-space, as well as for the non-periodic grids that appear in the study of quasicrystals. The theorem of existence of fundamental solutions by de Boor et al is generalized to general discrete supports, using only elementary methods. We also study the asymptotic growth of sequences and arrays using the Fenchel transformation.