Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:38:05.842Z Has data issue: false hasContentIssue false

Comportement des matériaux cellulaires sous sollicitationsdynamiques. Partie 1 : approche macroscopique

Published online by Cambridge University Press:  15 June 2010

P. Viot*
Affiliation:
LAMEFIP, Arts et Métiers PARISTECH, Esplanade des Arts et Métiers, 33405 Talence Cedex, France
*
aAuteur pour correspondance :philippe.viot@lamef.bordeaux.ensam.fr
Get access

Abstract

La méthodologie proposée pour l’étude du comportement de matériaux cellulaires soussollicitation dynamique est abordée par une approche multi-échelles. Le comportement desmousses polymères étudiées dépend du matériau constitutif, et de sa structure poreuse.L’approche développée consiste à proposer des moyens expérimentaux qui permettentd’imposer des sollicitations dynamiques sur ces matériaux afin de mesurer leurs réponsesmacroscopiques (pour l’identification de modèles de comportement) et d’identifier aussi laréponse de la structure de ces mousses à des échelles plus fines. L’objectif est ensuitede proposer une modélisation numérique capable de reproduire les phénomènes observés à ceséchelles et de remonter au comportement macroscopique. Des méthodes et des techniquesexpérimentales de caractérisation ont donc été développées aux différentes échelles pouridentifier le comportement macroscopique du matériau cellulaire. Les résultats obtenus àl’échelle macroscopique constituent une base de données indispensable pourl’identification de lois de comportement implémentées dans les dernières versions descodes de calcul éléments-finis. Cet article présente les moyens expérimentaux développéset les résultats des essais obtenus à l’échelle macroscopique.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Gibson, F. Ashby, Cellular solids, Structures and properties, Edition: Cambridge Solid State Science Series, 1997
Gibson, L.J., Zhang, J., Shercliff, T.L., Failure surface for cellular materials under multiaxial loads, I. Modeling. Int. J. Mech. Sci. 31 (1989) 635663CrossRefGoogle Scholar
Zhang, J., Kikuchi, N., Li, V., Yee, A., Nuscholtz, G., Constitutive modeling of polymeric foam material subjected to dynamic crash loading, Int. J. Impact Eng. 21 (1998) 369386CrossRefGoogle Scholar
Deshpande, V.S., Fleck, N.A., Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids 48 (2000) 12531283CrossRefGoogle Scholar
Mills, N.J., Gilchrist, A., Shear and compressive impact of polypropylene bead foam, Cell. Polym. 16 (1997) 194215Google Scholar
J.M. Lopez, Conception et réalisation d’une machine à choc pour l’étude de la déchirure à grandes vitesses de tôle en composites, mémoire de diplôme d’ingénieur du Centre National des Arts et Métiers, 1992
Froustey, C., Lataillade, J.L., Influence of large pre-straining of aluminium alloys on their residual fatigue resistance, Int. J. Fatigue 30 (2008) 908916CrossRefGoogle Scholar
Viot, P., Hydrostatic Compression on Polypropylene Foam, Int. J. Impact Eng. 36 (2009) 975989CrossRefGoogle Scholar
Mills, N.J., Fitzgerald, C., Gilchrist, A., Verdejo, R., Polymer foams for personal protection: cushions, shoes and helmets, Comp. Sci. Tech. 63 (2003) 23892400CrossRefGoogle Scholar
De Landro, Luca, Sala, Giuseppe, Olivieri, Daniela, Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polym. Test. 21 (2002) 217228CrossRefGoogle Scholar
Hopkinson, B., A method of measuring the pressure in the deformation of high explosives by the impact of bullets, Philos. Trans. R. Soc. Lond. A 213 (1914) 437452CrossRefGoogle Scholar
Kolsky, H., An investigation of the mechanical properties of material at a very high rate of loading, Proc. Phys. Soc. London B 62 (1949) 676701CrossRefGoogle Scholar
Collombet, F., Bacon, C., Cosculluela, A., Lataillade, J.L., Study of uniaxial dynamic compressive behaviour of Alumina using Split Hopkinson Pressures Bars, Proceedings of localized Damage II, Southampton, comp. Mech. Publications Elsevier Applied Science 2 (1992) 419417 Google Scholar
Forquin, P., Gary, G., Gatuingt, F., A testing technique for concrete under confinement at high rates of strain, Int. J. Impact Eng. 35 (2008) 425446CrossRefGoogle Scholar
Lataillade, J.L., Delaet, M., Collombet, F., Wolff, C., Effects of the intralaminar shear loading rate on the damage of multi-ply composites, Int. J. Impact Eng. 18 (1996) 679699CrossRefGoogle Scholar
Zhao, H., Elnasri, I., Abdennadher, S., An experimental study on the behaviour under impact loading of metallic cellular materials, Int. J. Mech. Sci. 47 (2005) 757774CrossRefGoogle Scholar
J.L. Lataillade, Dynamic tests in structural components: Mechanical tests and behaviour laws, ed. Lavoisier company, ISBN 190209185
C. Bacon, J.L. Lataillade, Development of the Kolsky-Hopkinson techniques and applications for non conventional testing, W.K. Nowacki, J.R. Klepaczko (Eds.), New experimental methods in material dynamics and impact, Chap. 1, Series: Trends in mechanics of materials, Vol. 3. ISBN 83-910387-7-7
H. Zhao, G. Gary, On the use of SHPB technique to determine the dynamic behaviour of the materials in the range of small strains, J. Solids Struct. (1996)
J.R. Klepaczko, Advanced experimental techniques in material testing, W.K. Nowacki, J.R. Klepaczko (Eds.), New experimental methods in material dynamics and impact, Chap. 1, Series: Trends in mechanics of materials, Vol. 3. ISBN 83-910387-7
Bacon, C., An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar, Exp. Mech. 38 (1998) 242249CrossRefGoogle Scholar
Bacon, C., Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects, Int. J. Impact Eng. 22 (1999) 5569CrossRefGoogle Scholar
Deshpande, V.S., Fleck, N.A., Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids 48 (2000) 12531283CrossRefGoogle Scholar