Article contents
Investigation of interphase effects on mechanical behaviorsof carbon nanocone-based composites
Published online by Cambridge University Press: 20 June 2014
Abstract
This paper presents the mechanical properties of carbon nanocone-based polymer composites in the presence of interphase layer. Some representative volume elements are considered to study the elastic behaviors of the transversely isotropic nanocomposite and the effects of the interphase layer on four of five independent constants related to this model. The finite element method is applied to obtain the results for different elastic moduli and thicknesses of the matrix.
- Type
- Research Article
- Information
- Copyright
- © AFM, EDP Sciences 2014
References
Su, F.H., Zhang, Z.Z., Wang, K., Jiang, W., Men, X.H., Liu, W.M., Friction and wear properties of
carbon fabric composites filled with nano-Al2O3 and nano-Si3N4, J. Compos. Part A: Appl.
Sci. Manufact.
37 (2006) 1351–1357
CrossRefGoogle Scholar
Huang, X., Netravali, A., Characterization of flax
fiber reinforced soy protein resin based green composites modified with nano-clay
particles, J. Compos. Sci. Tech.
67 (2007) 2005–2014
CrossRefGoogle Scholar
Su, F.H., Zhang, Z.Z., Liu, W.M., Tribological and mechanical
properties of Nomex fabric composites filled with polyfluo 150 wax and
nano-SiO2, Compos. Sci. Tech.
67 (2007) 102–110
CrossRefGoogle Scholar
Taha, M.M.R., Colak-Altunc, A.B.,
Al-Haik, M., A multi-objective optimization
approach for design of blast-resistant composite laminates using carbon
nanotubes, J. Compos. B
40 (2009) 522–529
CrossRefGoogle Scholar
Liu, Y.J., Chen, X.L., Evaluations of the effective
material properties of carbon nanotube-based composites using a nanoscale representative
volume element,J. Mech. Mater.
35 (2003) 69–81
CrossRefGoogle Scholar
Chen, X.L., Liu, Y.J., Square representative volume
elements for evaluating the effective material properties of carbon nanotube-based
composites, J. Comput. Mater. Sci.
29 (2004) 1–11
CrossRefGoogle Scholar
Shokrieh, M.M., Rafiee, R., Investigation of nanotube length
effect on the reinforcement efficiency in carbon nanotube based
composites, J. Compos. Struct.
92 (2010) 2415–2420
CrossRefGoogle Scholar
Mokashi, V.V., Qian, D., Liu, Y., A study on the tensile response and
fracture in carbon nanotube-based composites using molecular mechanics,
J. Compos. Sci. Tech.
67 (2007) 530–540
CrossRefGoogle Scholar
Formica, G., Lacarbonara, W., Alessi, R.,
Vibrations of carbon nanotube-reinforced composites J. Sound Vib.
329 (2010) 1875–1889
CrossRefGoogle Scholar
Ke, L.L., Yang, J., Kitipornchai, S., Nonlinear free vibration
of functionally graded carbon nanotube-reinforced composite beams,
J. Compos. Struct.
92 (2010) 676–683
CrossRefGoogle Scholar
Fukuchi, K., Sasaki, K., Katagiri, K., Imanishi, T., Kakitsuji, A., Aluminium based high thermal
conductive composite containing CNT and VGCF-deformation dependence of thermal
conductivity, Procedia Eng.
10 (2011) 912–917
CrossRefGoogle Scholar
Lopes, P.E., Hattum, F.V., Pereira, C.M.C.,
Novoa, P.J.R.O., Forero, S., Hepp, F., Pambaguian, L., High CNT content composites
with CNT Buckypaper and epoxy resin matrix: Impregnation behavior composite production
and characterization, Compos. Struct.
92 (2010) 1291–1298
CrossRefGoogle Scholar
Krätschmer, W.,
Lamb, L.D., Fostiropoulos, K.,
Huffman, D.R., C60: a new form of
carbon, Nature
347 (1990) 354–358
CrossRefGoogle Scholar
Jing, Du, Pan, Zeng, Molecular vibrational modes of
C60 and C70 via finite element method, Eur. J. Mech. A/ Solids. 28 (2009) 948–954
CrossRefGoogle Scholar
Khalid, F.A., Beffort, O., Klotz, U.E., Keller, B.A., Gasser, P., Vaucher, S.,
J. Acta Mat.
51 (2003) 4575
CrossRef
14. Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Brown, D.P., Krashninnikov, A.V.,
Anisimov, A.S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G.N., Hassanein, A., Shandakov, S.D., Lolli, G., Resasco, D.E., Chio, M., Nek, D.T., Kauppinen, E.I., A novel hybrid carbon
material, Nat. Nanotech.
2 (2007) 156–161
CrossRefGoogle ScholarPubMed
Wu, X., Zeng, X.C., First-Principles Study of a Carbon
Nanobud, ACS Nano.
2 (2008) 1459–1465
CrossRefGoogle Scholar
Momeni, K., Yassar, R.S., Stress distribution on a
single-walled carbon nanohorn embedded in an epoxy matrix nanocomposite under axial
force, J. Comput. Theor. Nanosci.
7 (2010) 1–7
CrossRefGoogle Scholar
Golestanian, H., Shojaie, M., Numerical characterization of
CNT-based polymer composites considering interface effects,
Comput. Mater. Sci.
50 (2010) 731–736
CrossRefGoogle Scholar
Hernandez-Perez, A.,
Aviles, F., Modeling the influence of
interphase on the elastic properties of carbon nanotube composites,
Comput. Mater. Sci.
47 (2010) 926–933
CrossRefGoogle Scholar
Montazeri, A., 1 R. Naghdabadi,
Investigation of the interphase effects on the mechanical behavior of carbon nanotube
polymer composites by multiscale modeling, J. Appl. Polymer
Sci.
117 (2010) 361–367
Google Scholar
Hu, N., Fukunaga, H., Lu, C., Kameyama, M., Yan, B., Prediction of elastic properties of
carbon nanotube-reinforced composites, Proc. R. Soc.
461 (2005) 1685–1710
CrossRefGoogle Scholar
Joshi, P., Upadhyay, S.H., Effect of interphase on
elastic behavior of multiwalled carbon nanotube reinforced composite,
Comput. Mater. Sci.
87 (2014) 267–273
CrossRefGoogle Scholar
Lu, P., Leong, Y.W., Pallathadka, P.K.,
He, C.B., Effective moduli of nanoparticle
reinforced composites considering interphase effect by extended double-inclusion
model–Theory and explicit expressions, Int. J. Eng.
Sci.
73 (2013) 33–55
CrossRefGoogle Scholar
Spanos, K.N., Georgantzinos, S.K.,
Anifantis, N.K., Investigation of stress
transfer in carbon nanotube reinforced composites using a multi-scale finite element
approach, Compos. Part B: Eng.
63 (2014) 85–93
CrossRefGoogle Scholar
R. Rafiee, R. Pourazizi, Influence of CNT
functionalization on the interphase region between CNT and polymer, Comput. Mater. Sci.
(2014) in press
Kumar, P., Srinivas, J., Numerical evaluation of
effective elastic properties of CNT-reinforced polymers for interphase
effects, Comput. Mater. Sci.
88 (2014)
139–144CrossRefGoogle Scholar
- 9
- Cited by