Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T11:32:54.029Z Has data issue: false hasContentIssue false

Modeling of composite multilayer rubber-steel: vibro-acousticinsulation of vehicle brake system

Published online by Cambridge University Press:  01 August 2012

Ala Zouaghi*
Affiliation:
Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, University of Carthage, BP 743, La Marsa 2078, Tunisia
Mez Chafra
Affiliation:
Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, University of Carthage, BP 743, La Marsa 2078, Tunisia
Yvon Chevalier
Affiliation:
Engineering of Mechanical Systems and materials Laboratory, LISMMA, ISMEP-SUPMECA, Paris, 93407 Saint-Ouen Cedex, France
*
a Corresponding author:moez.chafra@ept.rnu.tn
Get access

Abstract

The study of nonlinear dynamic behavior of laminate composed of steel and rubber layersalso referred as “Shim”, used for vibro-acoustic insulation in brake system, isinvestigated. The simulation of the vibro-acoustic nonlinear behavior of Shim depending onfrequency, taking into account the large deformations and various nonlinearhyper-viscoelastic laws of rubber are considered. This paper presents a solution tocontribute in the identification of the best design of Shim in terms of damping vibrationof brake systems, using analytical and numerical method. The choice of the best structuredepends essentially on the nature of rubber, on the stacking sequence of materials, ontheir thickness, on the number of layers and on volume fraction of rubber. An analyticalstudy, with the use of the transfer matrix method is presented. A model on the finiteelement software ANSYS is constructed. The results lead to conclusions about the beststructure and design of Shim in term of vibro-acoustic insulation.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Kerwin, E.M., Damping of flexural waves by a constrained viscoelastic layer, J. Acoust. Soc. Am. 31 (1959) 952962 CrossRefGoogle Scholar
Ungar, E.E., Kerwin, E.M., E.M Loss factors of viscoelastic systems in terms of energy concepts, J. Acoust. Soc. Am. 34 (1959) 954957 CrossRefGoogle Scholar
R.A. Di Taranto, W. Blasingame, Composite damping of vibrating sandwich beams, J. Appl. Mech. Trans. ASME (1967) 633–638
Mead, D.J., Markus, S., Damping sandwich beam with arbitrary boundary conditions, the forced vibration of three layer damped sandwich beam with arbitrary boundary conditions, J. Sound Vib. 10 (1967) 163175 CrossRefGoogle Scholar
Njilie Adamou, F., Muller, P., Gautherin, M.T., Evaluation de l’amortissement d’une plaque sandwich, acier-polymère-acier, Mécanique & Industries 4 (2003) 7781 CrossRefGoogle Scholar
Yuh-Chun, H., Shyh-Chin, H., The frequency response and damping effect of three-layer thin shell with viscoelastic core, Comput. Struct. 76 (2000) 577591 Google Scholar
Mahmoodi, P., Structural dampers, J. Structural Division–ASCE 95 (1972) 19611967 Google Scholar
D.M. Bergamon, R.D. Hanson, Characteristics of viscoelastic damping devices, Proceedings of the ATC Seminar and Workshop on Base Isolation and Passive Energy Dissipation, Applied Technology Council, Redwood City, 1986
H. Gacem, Y. Chevalier, J.L. Dion, M. Soula, B. Rezgui, Non linear dynamic behaviour of a preloaded thin sandwich plate incorporating visco-hyperelastic layers, J. Sound Vib. (2008) 1–19
D. Gay, Matériaux Composites, Hermes, 1987
J.N. Reddy, Mechanics of laminated composite plates, CRC press, Boca Raton, FL, 1997
J. Salençon, Viscoélasticité, Presses de l’école nationale des Ponts et Chaussées, 1983
Mandel, J., Sur les corps viscoélastiques linéaires à comportement linéaire, C. R. Acad. Sci. 241 (1955) 19101912 Google Scholar
Rivlin, M., A theory of large elastic deformation, J. Appl. Phys. 11 (1940) 582592 Google Scholar
Beda, T., Chevalier, Y., Sur le comportement statique et dynamique des élastomères en grandes déformations, Mécanique industrielle et Matériaux 50-N (1997) 228231 Google Scholar
A.D. Nashif, D.I. Jones, J.P. Henderson, Vibration damping, John Wiley – Intersciences, New York, 1985
J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons, New York, 1961
L.C. Botten, A.A. Asatryan, N.A. Nicorovici, R.C. McPhedran, C.C. Martijn de Sterke, Generalisation of the transfer matrix formulation of the theory of electron and photon conductance, Elsevier B.V, 2006
Y. Chevalier, J.T. Vinh, (ed), Mechanics of viscoelastic materials and wave dispersion, ISTE Ltd, London (U.K) and John Wiley & Sons, Hoboken (NJ- USA), 2010
K. Miller, Testing elastomers for finite element analysis, Axel Products, 2004
G.R. Bhashyam, Ansys mechanical : A powerful nonlinear simulation tool, A SYS, INC, 2003
Tzikang, Determining a Prony series for a viscoelastic material from time varying strain data, NASA Langley Technical Report Server, 2000