Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T15:24:17.961Z Has data issue: false hasContentIssue false

Non-reflective inlet conditions for the calculation of unsteadyturbulent compressible flows at low Mach number

Published online by Cambridge University Press:  30 May 2014

Yann Moguen*
Affiliation:
Universitéde Pau et des Pays de l’Adour, LMAP and Inria, Cagire Team, IPRA, Avenue de l’Université, 64013 Pau, France
Pascal Bruel
Affiliation:
CNRS, Université de Pau et des Pays de l’Adour, LMAP and Inria, Cagire Team, IPRA, Avenue de l’Université, 64013 Pau, France
Vincent Perrier
Affiliation:
Inria, Cagire Team and Université de Pau et des Pays de l’Adour, LMAP, IPRA, Avenue de l’Université, 64013 Pau, France
Erik Dick
Affiliation:
Ghent University - Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat, 9000 Gent, Belgique
*
Corresponding author:yann.moguen@univ-pau.fr
Get access

Abstract

For the unsteady simulation of compressible subsonic flows (Large Eddy Simulation orDirect Numerical Simulation), the proper handling of the inlet boundary is a challengingtask. Indeed, inflow generation through imposition of the velocity may lead to anon-physical reflection of the upstream acoustic waves. In the present contribution, amethod that allows both filtering of these waves and proper imposition of the requiredvariables is proposed. This method is based on identification of the roles of the temporalrate of change of wave amplitudes at the inlet in the low Mach number regime. Theformulation obtained is tested numerically on unsteady one-dimensional flows at low Machnumber for which the unsteady inlet velocity signal is purely harmonic or harmonic withthe superimposition of synthetic turbulence.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thompson, K.W., Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987) 124 CrossRefGoogle Scholar
Poinsot, T.J., Lele, S.K., Boundary conditions for direct simulations of compressible viscous flow, J. Comput. Phys. 101 (1992) 104129 CrossRefGoogle Scholar
Rudy, D.H., Strikwerda, J.C., A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. Comput. Phys. 36 (1980) 5570 CrossRefGoogle Scholar
Selle, L., Nicoud, F., Poinsot, T., Actual impedance of nonreflecting boundary conditions: Implications for computation of resonators, AIAA J. 42 (2004) 958964 CrossRefGoogle Scholar
Moguen, Y., Bruel, P., Dick, E., Semi-implicit characteristic-based boundary treatment for acoustics in low Mach number flows, J. Comput. Phys. 255 (2013) 339361 CrossRefGoogle Scholar
Pirozzoli, S., Colonius, T., Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations, J. Comput. Phys. 248 (2013) 109126 CrossRefGoogle Scholar
Polifke, W., Wall, C., Moin, P., Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys. 213 (2006) 437−449 CrossRefGoogle Scholar
Prosser, R., Towards improved boundary conditions for the DNS and LES of turbulent subsonic flows, J. Comput. Phys. 222 (2005) 469474 CrossRefGoogle Scholar
Guézennec, N., Poinsot, T., Acoustically nonreflecting and reflecting boundary conditions for vorticity injection in compressible solvers, AIAA J. 47 (2009) 17091722 CrossRefGoogle Scholar
Taylor, G.I., The spectrum of turbulence, Proc. R. Soc. Lond. A 164 (1938) 476490 CrossRefGoogle Scholar
Moguen, Y., Kousksou, T., Bruel, P., Vierendeels, J., Dick, E., Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, J. Comput. Phys. 231 (2012) 55225541 CrossRefGoogle Scholar
Shen, W.Z., Michelsen, J.A., Sørensen, J.N., Improved Rhie-Chow interpolation for unsteady flow computations, AIAA J. 39 (2001) 24062409 CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Crisanti, A., Vulpiani, A., Mimicking a turbulent signal: Sequential multiaffine processes, Phys. Rev. E 57 (1998) R6261R6264 CrossRefGoogle Scholar
Wilson, J.D., Zhuang, Y., Restriction on the timestep to be used in stochastic Lagrangian models of turbulent dispersion, Bound.-Lay. Meteorol. 49 (1989) 309316 CrossRefGoogle Scholar