No CrossRef data available.
Article contents
Les verres métalliques massifs : matériaux à faible ou à fortcoefficient d’amortissement ?*
Published online by Cambridge University Press: 23 December 2011
Abstract
Les verres métalliques présentent des caractéristiques très intéressantes, en particulierleurs propriétés élastiques, combinées avec une relative facilité de mise en œuvre àtempérature pas trop élevée. C’est ce qui conduit à leur utilisation comme matériau pourdes composants en micro-mécanique, des matériels sportifs, des boitiers pour la téléphonieou l’informatique. Mais pour de nombreuses applications une autre caractéristiquemécanique peut être essentielle : leur coefficient d’amortissement. Si par exemple pourcertaines pièces mécaniques un rendu optimal de l’énergie est requis (cas par exempled’une raquette de tennis de haute performance), une forte capacité d’amortissement peut enrevanche être indispensable pour d’autres composants mécaniques. Le coefficientd’amortissement dépend pour un matériau donné, notamment de la fréquence de sollicitationet de la température. Pour les verres métalliques, il apparaît schématiquement deuxdomaines : – À basse température, c’est-à-dire par exemple à la température ambiante pourles verres métalliques massifs base zirconium, palladium ou cuivre, le coefficientd’amortissement est très faible, de l’ordre de quelques 10-6, une valeur prochede celle observée dans la silice de très haute pureté. Combinée au caractère conducteur dumatériau, ceci permet d’envisager l’application de ces matériaux pour la réalisationd’éléments de résonateurs. Un exemple, celui d’un résonateur hémisphérique pourapplication gyroscopique est présenté en détail. Il est montré dans ce cas que destraitements thermiques appropriés peuvent conduire à l’amélioration des caractéristiquesrecherchées. – À haute température, c’est-à-dire au voisinage de la température detransition vitreuse. Celle-ci se situe pour les matériaux considérés (base Zr, base Pd oubase Cu) aux alentours de 400 °C. À l’instar de tous les autres matériaux amorphes, lecoefficient d’amortissement devient alors très grand et des valeurs du facteur de pertesupérieures à 1 sont fréquemment observées. Ceci résulte de la mobilité atomique oumoléculaire qui devient alors très importante, entrainant une dissipation d’énergieimportante lors de toute sollicitation mécanique. Dans ces conditions l’effet de lafréquence devient très net. Ces différents résultats, obtenus lors d’essais mécaniquesdynamiques, sont corroborés par des essais de caractérisation de la microstructure dumatériau, notamment par diffraction des rayons X in-situ. Différents modèles physiquespermettant de comprendre le comportement mécanique en lien avec la nature du matériau sontprésentés.
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2011