Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T05:47:42.773Z Has data issue: false hasContentIssue false

An Open-Cell Environmental Transmission Electron Microscopy Technique for In Situ Characterization of Samples in Aqueous Liquid Solutions

Published online by Cambridge University Press:  17 January 2020

Barnaby D.A. Levin
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
Diane Haiber
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
Qianlang Liu
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
Peter A. Crozier*
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
*
*Author for correspondence: Peter A. Crozier, E-mail: crozier@asu.edu
Get access

Abstract

The desire to image specimens in liquids has led to the development of open-cell and closed-cell techniques in transmission electron microscopy (TEM). The closed-cell approach is currently more common in TEM and has yielded new insights into a number of biological and materials processes in liquid environments. The open-cell approach, which requires an environmental TEM (ETEM), is technically challenging but may be advantageous in certain circumstances due to fewer restrictions on specimen and detector geometry. Here, we demonstrate a novel approach to open-cell liquid TEM, in which we use salt particles to facilitate the in situ formation of droplets of aqueous solution that envelope specimen particles coloaded with the salt. This is achieved by controlling sample temperature between 1 and 10°C and introducing water vapor to the ETEM chamber above the critical pressure for the formation of liquid water on the salt particles. Our use of in situ hydration enables specimens to be loaded into a microscope in a dry state using standard 3 mm TEM grids, allowing specimens to be prepared using trivial sample preparation techniques. Our future aim will be to combine this technique with an in situ light source to study photocorrosion in aqueous environments.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, IM & McBain, JW (1944 a). A closed cell for electron microscopy. J Appl Phys 15, 607609.CrossRefGoogle Scholar
Abrams, IM & Mcbain, JW (1944 b). A closed cell for electron microscopy. Science 100, 273274.10.1126/science.100.2595.273CrossRefGoogle ScholarPubMed
Bugnet, M, Overbury, SH, Wu, ZL & Epicier, T (2017). Direct visualization and control of atomic mobility at {100} surfaces of ceria in the environmental transmission electron microscope. Nano Lett 17, 76527658.CrossRefGoogle ScholarPubMed
Chen, Q, Smith, JM, Park, J, Kim, K, Ho, D, Rasool, HI, Zettl, A & Alivisatos, AP (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13, 45564561.10.1021/nl402694nCrossRefGoogle ScholarPubMed
Dai, LL, Sharma, R & Wu, C (2005). Self-assembled structure of nanoparticles at a liquid−liquid interface. Langmuir 21, 26412643.10.1021/la047256tCrossRefGoogle Scholar
Danilatos, GD (1991). Review and outline of environmental SEM at present. J Microsc 162, 391402.CrossRefGoogle Scholar
de Jonge, N & Ross, FM (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.CrossRefGoogle ScholarPubMed
Denoual, M, Menon, V, Sato, T, de Sagazan, O, Coleman, AW & Fujita, H (2019). Liquid cell with temperature control for in situ TEM chemical studies. Meas Sci Technol 30, 017001.10.1088/1361-6501/aaf110CrossRefGoogle Scholar
Dukes, MJ, Thomas, R, Damiano, J, Klein, KL, Balasubramaniam, S, Kayandan, S, Riffle, JS, Davis, RM, McDonald, SM & Kelly, DF (2014). Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc Microanal 20, 338345.CrossRefGoogle ScholarPubMed
Engineering ToolBox (2005). Ethanol Freeze Protected Water Solutions. Available at https://www.engineeringtoolbox.com/ethanol-water-d_989.html (accessed August 22, 2019).Google Scholar
Gai, PL (2002). Development of wet environmental TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc Microanal 8, 2128.10.1017/S143192760201005XCrossRefGoogle ScholarPubMed
Grogan, JM & Bau, HH (2010). The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J Microelectromech Syst 19, 885894.CrossRefGoogle Scholar
Helveg, S, Kisielowski, CF, Jinschek, JR, Specht, P, Yuan, G & Frei, H (2015). Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 68, 176185.10.1016/j.micron.2014.07.009CrossRefGoogle ScholarPubMed
Holtz, ME, Yu, Y, Gao, J, Abruña, HD & Muller, DA (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal 19, 10271035.10.1017/S1431927613001505CrossRefGoogle ScholarPubMed
Huang, JY, Zhong, L, Wang, CM, Sullivan, JP, Xu, W, Zhang, LQ, Mao, SX, Hudak, NS, Liu, XH, Subramanian, A, Fan, H, Qi, L, Kushima, A & Li, J (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520.10.1126/science.1195628CrossRefGoogle Scholar
Jensen, E, Burrows, A & Mølhave, K (2014). Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc Microanal 20, 445451.10.1017/S1431927614000300CrossRefGoogle ScholarPubMed
Jokisaari, JR, Hachtel, JA, Hu, X, Mukherjee, A, Wang, C, Konecna, A, Lovejoy, TC, Dellby, N, Aizpurua, J, Krivanek, OL, Idrobo, J-C & Klie, RF (2018). Vibrational spectroscopy of water with high spatial resolution. Adv Mater 30, 1802702.10.1002/adma.201802702CrossRefGoogle Scholar
Kozarac, Z, Ćosović, B & Branica, M (1976). Estimation of surfactant activity of polluted seawater by Kalousek commutator technique. J Electroanal Chem 68, 7583.10.1016/S0022-0728(76)80304-XCrossRefGoogle Scholar
Krause, F (1937). Das magnetische Elektronenmikroskop und seine Anwendung in der Biologie. Die Naturwissenschaften 25, 817825.CrossRefGoogle Scholar
Lawrence, EL & Crozier, PA (2018). Oxygen transfer at metal-reducible oxide nanocatalyst interfaces: Contrasting carbon growth from ethane and ethylene. ACS Appl Nano Mater 1, 13601369.CrossRefGoogle Scholar
Liu, Q, Zhang, L & Crozier, PA (2016). Design and application of an in situ illumination system for an aberration-corrected environmental transmission electron microscope. Microsc Microanal 22, 730731.10.1017/S1431927616004505CrossRefGoogle Scholar
Liu, X, Zhang, C, Li, Y, Niemantsverdriet, JW, Wagner, JB & Hansen, TW (2017). Environmental transmission electron microscopy (ETEM) studies of single iron nanoparticle carburization in synthesis gas. ACS Catal 7, 48674875.CrossRefGoogle Scholar
Luo, L, Engelhard, MH, Shao, Y & Wang, C (2017). Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM. ACS Catal 7, 76587664.10.1021/acscatal.7b02861CrossRefGoogle Scholar
Marton, L (1935). La microscopie electronique des objets biologiques. Bull Cl Sci Acad R Belg 21, 553.Google Scholar
Matricardi, VR, Moretz, RC & Parsons, DF (1972). Electron diffraction of wet proteins: Catalase. Science 177, 268270.CrossRefGoogle ScholarPubMed
Park, J, Park, H, Ercius, P, Pegoraro, AF, Xu, C, Kim, JW, Han, SH & Weitz, DA (2015). Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett 15, 47374744.10.1021/acs.nanolett.5b01636CrossRefGoogle ScholarPubMed
Parsons, DF (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.10.1126/science.186.4162.407CrossRefGoogle ScholarPubMed
Parsons, DF, Matricardi, VR, Moretz, RC & Turner, JN (1974). Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv Biol Med Phys 15, 161270.10.1016/B978-0-12-005215-8.50012-7CrossRefGoogle ScholarPubMed
Pashley, DW & Presland, AEB (1962). The movement of dislocations during the observation of metal films inside an electron microscope. Philos Mag 7, 14071415.CrossRefGoogle Scholar
Ring, EA & de Jonge, N (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.CrossRefGoogle ScholarPubMed
Ross, FM (2015). Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886.10.1126/science.aaa9886CrossRefGoogle ScholarPubMed
Ruska, E (1942). Beitrag zur übermikroskopischen Abbildung bei höheren Drucken. Kolloid-Zeitschrift 100, 212219.10.1007/BF01519549CrossRefGoogle Scholar
Tai, K, Liu, Y & Dillon, SJ (2014). In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc Microanal 20, 330337.10.1017/S1431927613014128CrossRefGoogle ScholarPubMed
Unocic, RR, Sacci, RL, Brown, GM, Veith, GM, Dudney, NJ, More, KL, Walden, FS, Gardiner, DS, Damiano, J & Nackashi, DP (2014). Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc Microanal 20, 452461.10.1017/S1431927614000166CrossRefGoogle ScholarPubMed
Wang, CM, Xu, W, Liu, J, Choi, DW, Arey, B, Saraf, LV, Zhang, JG, Yang, ZG, Thevuthasan, S, Baer, DR & Salmon, N (2010). In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J Mater Res 25, 15411547.10.1557/JMR.2010.0198CrossRefGoogle Scholar
Ward, PR & Mitchell, RF (1972). A facility for electron microscopy of specimens in controlled environments. J Phys E 5, 160162.CrossRefGoogle Scholar
White, ER, Mecklenburg, M, Singer, SB, Aloni, S & Regan, BC (2011). Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 4, 055201.CrossRefGoogle Scholar
Williamson, MJ, Tromp, RM, Vereecken, PM, Hull, R & Ross, FM (2003). Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2, 532536.CrossRefGoogle ScholarPubMed
Wise, ME, Biskos, G, Martin, ST, Russell, LM & Buseck, PR (2005). Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol Sci Technol 39, 849856.10.1080/02786820500295263CrossRefGoogle Scholar
Wise, ME, Martin, ST, Russell, LM & Buseck, PR (2008). Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci Technol 42, 281294.10.1080/02786820802047115CrossRefGoogle Scholar
Yang, W-CD, Wang, C, Fredin, LA, Lin, PA, Shimomoto, L, Lezec, HJ & Sharma, R (2019). Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam. Nat Mater 18, 614619.10.1038/s41563-019-0342-3CrossRefGoogle ScholarPubMed
Yuk, JM, Park, J, Ercius, P, Kim, K, Hellebusch, DJ, Crommie, MF, Lee, JY, Zettl, A & Alivisatos, AP (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.10.1126/science.1217654CrossRefGoogle ScholarPubMed
Zeng, Z, Liang, W-I, Liao, H-G, Xin, HL, Chu, Y-H & Zheng, H (2014). Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett 14, 17451750.CrossRefGoogle ScholarPubMed
Zhou, Y, Wang, B, Song, X, Li, E, Li, G, Zhao, S & Yan, H (2006). Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Appl Surf Sci 253, 26902694.10.1016/j.apsusc.2006.05.118CrossRefGoogle Scholar