Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T15:09:35.308Z Has data issue: false hasContentIssue false

Biogenesis of the Reservosomes of Trypanosoma cruzi

Published online by Cambridge University Press:  01 October 2004

Celso Sant'Anna
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janiero, Rio de Janeiro, Brazil
Wanderley de Souza
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janiero, Rio de Janeiro, Brazil
Narcisa Cunha-e-Silva
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janiero, Rio de Janeiro, Brazil
Get access

Abstract

Reservosomes are endocytic compartments found in the posterior region of epimastigotes of Trypanosoma cruzi. In the differentiation from trypomastigotes to epimastigotes (reverse metacyclogenesis in vitro), one has the rare opportunity of following the biogenesis of an endocytic compartment. Metacyclic trypomastigotes incubated in LIT medium highly enriched with fetal calf serum differentiated directly to epimastigotes. In recently differentiated epimastigotes, acidic organelles were found in round compartments spread along the cell body, whereas in control epimastigotes they were found in reservosomes located in the posterior region. Ultrastructural analysis of intermediate forms showed that the cytostome and reservosomes appeared before differentiation to epimastigotes was completed. Many polymorphic reservosomes, with or without lipid inclusions, were observed from the anterior portion of the cell body, in close relationship with the Golgi complex, to the posterior region. Endocytic tracers were observed in the cytostome, flagellar pocket, vesicles, and newly formed reservosomes. Cruzipain, the main protease of T. cruzi, was localized in newly formed reservosomes and in vesicles budding from the trans-Golgi network that seem to fuse with reservosomes. Ingested gold-labeled albumin and cruzipain colocalized in recently formed reservosomes. Endocytosis and immunocytochemical analysis suggested that the endocytic and the secretory pathways may contribute to reservosome formation.

Type
Feature Articles
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araripe, J.R., Cunha-e-Silva, N.L., Ürmény, T.P., De Souza, W., & Rondinelli, E. (1999). Characterization of three Rab genes in Trypanosoma Cruzi. Mem Inst Oswaldo Cruz 94, 140.Google Scholar
Berryman, M.A. & Rodewald, R.D. (1990). An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38, 15970.Google Scholar
Camargo, E.P. (1964). Growth and differentiation of Trypanosoma cruzi. I—Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 6, 93100.Google Scholar
Cazzulo, J.J., Franke, M.C., Martinez, J., & Franke de Cazzulo, B.M. (1990). Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1037, 186191.Google Scholar
Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K., & Zerial, M. (1990). Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317329.Google Scholar
Contreras, V.T., Salles, J.M., Thomaz, N., Morel, C.M., & Goldenberg, S. (1985). In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16, 315327.Google Scholar
Cunha-e-Silva, N.L, Atella, G.C., Porto-Carreiro, I.A., Morgado-Diaz, J.A., Pereira, M.G., & De Souza, W. (2002). Isolation and characterization of a reservosome fraction from Trypanosoma cruzi. FEMS Microbiol Lett 214, 712.Google Scholar
De Souza, W. (2002). Basic cell biology of Trypanosoma cruzi. Curr Pharm Des 8, 269285.Google Scholar
De Souza, W., Carvalho, T.U., & Benchimol, M. (1978). Trypanosoma cruzi: Ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol 45, 101115.Google Scholar
Docampo, R. & Moreno, S.M.J. (1999). Acidocalcisome: A novel Ca2+ store compartment in Trypanosomatids and Apicomplexan parasites. Parasitol Today 15, 443448.Google Scholar
Engel, J.C., Doyle, P.S., Palmer, J., Hsieh, I., Bainton, D.F., & McKerrow, J.H. (1998). Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci 111, 596606.Google Scholar
Engel, J.C., García, C.T., Hsieh, I., Doyle, P.S., & McKerrow, J.H. (2000). Upregulation of the secretory pathway in cysteine protease inhibitor-resistant Trypanosoma cruzi. J Cell Sci 113, 13451354.Google Scholar
Figueiredo, R.C.B.Q., Steindel, M., & Soares, M. (1994). The reservosomes of epimastigotes forms of Trypanosoma cruzi: Occurrence during in vitro cultivation. Parasitol Res 80, 517522.Google Scholar
Gruenberg, J. (2001). The endocytic pathway: A mosaic of domains. Nat Rev Mol Cell Biol 2, 721730.Google Scholar
Huete-Perez, J.A., Engel, J.C., Brinen, L.S., Mottram, J.C., & McKerrow, J.H. (1999). Protease trafficking in two primitive eukaryotes is mediated by a prodomain protein motif. J Biol Chem 274, 1624916256.Google Scholar
Mendonça, S.M., Silva, J.L.N., Cunha-e-Silva, N., De Souza, W., & Lopes, U.G. (2000). Characterization of a Rab 11 homologue in Trypanosoma cruzi. Gene 243, 179185.Google Scholar
Morgan, G.W., Hall, B.S., Denny, P.W., Field, M.C., & Carrington, M. (2002). The endocytic apparatus of the kinetoplastida. Part II: Machinery and components of the system. Trends Parasitol 18, 540546.Google Scholar
Muniz, J. & Borrielo, A. (1945). Estudo sobre a ação lítica de diferentes soros sobre as formas de cultura e sanguículas do “Schizotrypanum cruzi. Rev Bras Biol 5, 563576.Google Scholar
Murta, A.C., Persechini, P.M., Souto-Padron, T., De Souza, W., Guimaraes, J.A., & Scharfstein, J. (1990). Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43, 2738.Google Scholar
Nuoffer, C. & Balch, W.E. (1994). GTPases: Multifunctional molecular switches regulating vesicular traffic. Annu Rev Biochem 63, 949990.Google Scholar
Porto-Carreiro, I., Attias, M., Miranda, K., De Souza, W., & Cunha-e-Silva, N. (2000). Trypanosoma cruzi epimastigote endocytic pathway: Cargo enters the cytostome and passes through an early endosomal network before reservosome storage. Eur J Cell Biol 79, 858869.Google Scholar
Scala, C., Cenacchi, G., Ferrari, C., Pasquinelli, G., Preda, P., & Manara, G.C. (1992). A new acrylic resin formulation: A useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40, 17991804.Google Scholar
Shapiro, S.Z. & Webster, P. (1989). Coated vesicles from the protozoan parasite Trypanosoma brucei: Purification and characterization. J Protozool 36, 344349.Google Scholar
Soares, M.J. (1999). The reservosome of Trypanosoma cruzi epimastigotes: An organelle of the endocytic pathway with a role on metacyclogenesis. Mem Inst Oswaldo Cruz 94, 139141.Google Scholar
Soares, M.J., De Souza, M.F., & De Souza, W. (1987). Ultrastructural visualization of lipids in trypanosomatids. J Protozool 34, 199203.Google Scholar
Soares, M.J. & De Souza, W. (1988). Cytoplasmic organelles of trypanosomatids. A cytochemical and stereological study. J Submicrosc Cytol Pathol 20, 349363.Google Scholar
Soares, M.J. & De Souza, W. (1991). Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77, 461469.Google Scholar
Soares, M.J., Souto-Padrón, T., Bonaldo, M.C., Goldenberg, S., & De Souza, W. (1989). A stereological study of the differentiation process in Trypanosoma cruzi. Parasitol Res 75, 522527.Google Scholar
Soares, M.J., Souto-Padrón, T., & De Souza, W. (1992). Identification of a large pre-lysosomal compartment in the pathogenic protozoan Trypanosoma cruzi. J Cell Sci 102, 157167.Google Scholar
Souto-Padrón, T., Campetella, O.E., Cazzulo, J.J., & De Souza, W. (1990). Cysteine proteinase in Trypanosoma cruzi: Immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci 96, 495490.Google Scholar
Tomlinson, S., Pontes De Carvalho, L.C., Vandekerchove, F., & Nussenzweig, V. (1994). Role of sialic acid in the resistance of Trypanosama cruzi tripomastigotas to complement. J Immunol 153, 31413147.Google Scholar
Ueda-Nakamura, T., Attias, M., & de Souza, W. (2001). Megasome biogenesis in Leishmania amazonensis: A morphometric and cytochemical study. Parasitol Res 87, 8997.Google Scholar
Ueda-Nakamura, T., da Conceicao, R.S.M, Cunha-e-Silva, N.L., Traub-Cseko, Y.M., & de Souza, W. (2002). Expression and processing of megasome cysteine proteinases during Leishmania amazonensis differentiation. Parasitol Res 88, 332337.Google Scholar
Weise, F., Stierhof, Y.D., Kuhn, C., Wiese, M., & Overath, P. (2000). Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 113, 45874603.Google Scholar
Zeng, J., Ren, M., Gravotta, D., De Lemos-Chiarandini, C., Lui, M., Erdjument-Bromage, H., Tempst, P., Xu, G., Shen, T.M., Morimoto, T., Adesnik, M., & Sabatini, D.D. (1999). Identification of a putative effector protein for Rab11 that participates in transferrin recycling. Proc Natl Acad Sci USA 96, 28402845.Google Scholar