Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T12:24:29.543Z Has data issue: false hasContentIssue false

Combined Anastrozole and Antiplatelet Therapy Treatment Differentially Promotes Breast Cancer Cell Survival

Published online by Cambridge University Press:  03 April 2020

Kutlwano Xulu*
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
Raquel Duarte
Affiliation:
Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
Tanya Augustine*
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
*
*Authors for correspondence: Tanya Augustine, E-mail: Tanya.Augustine@wits.ac.za; Kutlwano Xulu, E-mail: kutlwano.xulu@wits.ac.za
*Authors for correspondence: Tanya Augustine, E-mail: Tanya.Augustine@wits.ac.za; Kutlwano Xulu, E-mail: kutlwano.xulu@wits.ac.za
Get access

Abstract

Thromboembolic disorders are the second leading cause of death in breast cancer. Antiplatelet therapy combined with cancer therapy is a potential treatment strategy against cancer-associated thromboembolic disorders; however, the efficacy of such dual treatment has not been established. This study reports novel findings on the response of hormone-dependent breast cancer cell lines (MCF7/T47D) following 24 h treatment with Anastrozole, combined with Aspirin and Clopidogrel cocktail; and Atopaxar. Neutral red and lactate dehydrogenase assays were conducted to assess viability and cytotoxicity respectively. Flow cytometric Annexin-V/PI assay was used to assess the mode of cell death. Morphological alterations were studied using scanning electron microscopy. Statistical analysis was conducted using Statistica V13. Definitive outcomes were established with flow cytometric detection of phosphatidylserine exposure and propidium iodide staining, complemented with ultrastructural analysis. Results showed that a few cells were undergoing death mainly through secondary necrosis. Morphological features suggesting induced cell motility (pseudopodia/ruffled membranes) were observed in both cell lines; notably, T47D cells presented pronounced features than MCF7 cells. Overall, these findings suggest that such combined treatment may differentially promote cell survival, inducing a more aggressive breast cancer phenotype.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*The author names and corresponding author information have been corrected since publication. A corrigendum notice detailing the changes has also been published: https://doi.org/10.1017/S1431927620001622.

References

Adjo Aka, J & Lin, SX (2012). Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7. PLoS ONE 7, 19.CrossRefGoogle ScholarPubMed
Agnoli, C, et al. (2017). Biomarkers of inflammation and breast cancer risk: A case-control study nested in the EPIC-Varese cohort. Sci Rep 7(1), 1825. doi: 10.1038/s41598-017-12703-xCrossRefGoogle ScholarPubMed
Al-Bahlani, S, Al-Dhahli, B, Al-Adawi, K, Al-Nabhani, A & Al-Kindi, M (2017). Platinum-based drugs differentially affect the ultrastructure of breast cancer cell types. Biomed Res Int 2017, 113.Google ScholarPubMed
Armstrong, PCJ, Dhanji, ARA, Tucker, AT, Mitchell, JA & Warner, TD (2010). Reduction of platelet thromboxane A2 production ex vivo and in vivo by clopidogrel therapy. J Thromb Haemost 8, 613615.CrossRefGoogle ScholarPubMed
Bambace, NM & Holmes, CE (2011). The platelet contribution to cancer progression. J Thromb Haemost 9(2), 237249. doi: 10.1111/j.1538-7836.2010.04131.xCrossRefGoogle ScholarPubMed
Bhatt, DL, Fox, KAA, Hacke, W, Berger, PB, Black, HR, Boden, WE, Cacoub, P, Cohen, EA, Creager, MA, Donald Easton, J, Flather, MD, Haffner, SM, Hamm, CW, Hankey, GJ, Claiborne Johnston, S, Mak, K, Mas, J, Montalescot, G, Pearson, TA, Steg, G, Steinhubl, SR, Weber, MA, Brennan, DM, Fabry-Ribaudo, L, Joan Booth, RN & Topol, EJ (2006). Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. Engl J Med 16354, 17061717.CrossRefGoogle Scholar
Borm, B, et al. (2005). Membrane ruffles in cell migration: Indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp Cell Res 302(1), 8395. doi: 10.1016/j.yexcr.2004.08.034CrossRefGoogle ScholarPubMed
Brito, C, et al. (2019). Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 76(7), 13191339. doi: 10.1007/s00018-018-2992-8CrossRefGoogle ScholarPubMed
Campos, SM (2004). Aromatase inhibitors for breast cancer in postmenopausal women. Oncologist 9, 126–36.CrossRefGoogle ScholarPubMed
Capodanno, D, Ferreiro, JL & Angiolillo, DJ (2013). Antiplatelet therapy: New pharmacological agents and changing paradigms. J Thromb Haemost 11(SUPPL.1), 316329. doi: 10.1111/jth.12219CrossRefGoogle ScholarPubMed
Caswell, PT & Zech, T (2018). Actin-based cell protrusion in a 3D matrix. Trends Cell Biol. 28(10), 823834. doi: 10.1016/j.tcb.2018.06.003CrossRefGoogle Scholar
Choi, S, Bhagwat, AM, Al Mismar, R, Goswami, N, Ben Hamidane, H, Sun, L & Graumann, J (2018). Proteomic profiling of human cancer pseudopodia for the identification of anti-metastatic drug candidates. Sci Rep 8, 110.Google ScholarPubMed
Cummings, BS, Wills, LP & Schnellmann, RG (2004). Measurement of cell death in mammalian cells. Curr Protoc Phamacol 1(Lemasters 1999), 130. doi: 10.1002/0471141755.ph1208s25.Measurement.Google Scholar
DeCensi, A, Thorat, MA, Bonanni, B, Smith, SG & Cuzick, J (2015). Barriers to preventive therapy for breast and other major cancers and strategies to improve uptake. Ecancermedicalscience 9, 112.CrossRefGoogle ScholarPubMed
Denslow, A, et al. (2017). Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models. PLoS ONE. doi: 10.1371/journal.pone.0188740.CrossRefGoogle Scholar
Duan, G, et al. (2017). Graphene-induced pore formation on cell membranes. Sci Rep 7(January), 112. doi: 10.1038/srep42767Google ScholarPubMed
Falanga, A, Russo, L & Verzeroli, C (2013). Mechanisms of thrombosis in cancer. Thromb Res 131, S59S62. doi: 10.1016/S0049-3848(13)70024-0CrossRefGoogle ScholarPubMed
Haddad, TC & Greeno, EW (2006). Chemotherapy-induced thrombosis. Thromb Res 118(5), 555568. doi: 10.1016/j.thromres.2005.10.015CrossRefGoogle ScholarPubMed
Howell, SSJ, Johnston, SRD & Howell, A (2004). The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract Res Clin Endocrinol Metab 18(1), 4766. doi: 10.1016/S1521-690X(03)0072-1CrossRefGoogle ScholarPubMed
Khorana, AA (2012). Cancer-associated thrombosis: Updates and controversies. Hematology 2012, 626630.CrossRefGoogle ScholarPubMed
Kochel, TJ, et al. (2016). Multiple drug resistance-associated protein (MRP4) exports prostaglandin E2 (PGE2) and contributes to metastasis in basal/triple negative breast cancer. Oncotarget 8(4), 65406554. doi: 10.18632/oncotarget.14145CrossRefGoogle Scholar
Kogushi, M, et al. (2011). The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur J Pharmacol 657(1–3), 131137. doi: 10.1016/j.ejphar.2011.01.058CrossRefGoogle ScholarPubMed
Krämer, CEM, Wiechert, W & Kohlheyer, D (2016). Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep 6, 113.CrossRefGoogle ScholarPubMed
Langbeen, A, et al. (2014). Effects of neutral red assisted viability assessment on the cryotolerance of isolated bovine preantral follicles. J Assist Reprod Genet 31(12), 17271736. doi: 10.1007/s10815-014-0340-yCrossRefGoogle ScholarPubMed
Lange, K (2011). Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 226(4), 896927. doi: 10.1002/jcp.22302CrossRefGoogle ScholarPubMed
Leader, A, et al. (2017). The effect of combined aspirin and clopidogrel treatment on cancer incidence Am J Med 130(7), 826-832. doi: 10.1016/j.amjmed.2017.01.022CrossRefGoogle ScholarPubMed
Li, Z & Zhou, Z (2016). How are necrotic cells recognized by their predators? Worm 5(1), e1120400. doi: 10.1080/21624054.2015.1120400CrossRefGoogle ScholarPubMed
Liu, X, et al. (2017). Protease-activated receptor-1 (PAR-1): A promising molecular target for cancer. Oncotarget 8(63), 107334107345. doi: 10.18632/oncotarget.21015CrossRefGoogle ScholarPubMed
Meikle, CKS, et al. (2017). Cancer and thrombosis: The platelet perspective. Front Cell Dev Biol 4(January), 110. doi: 10.3389/fcell.2016.00147CrossRefGoogle ScholarPubMed
Minaeva, OV, Brodovskaya, EP, Pyataev, MA, Gerasimov, MV, Zharkov, MN, Yurlov, I, Kulikov, O, Kotlyarov, AA, Balykova, LA, Kokorev, AV, Zaborovskiy, AV, Pyataev, NA & Sukhorukov, GB (2017). Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetite containing polyelectrolyte microcapsules. Phys Conf Ser 784, 310.CrossRefGoogle Scholar
Montt-Guevara, MM, et al. (2016). Androgens regulate T47D cells motility and invasion through actin cytoskeleton remodeling. Front Endocrinol 7(SEP), 110. doi: 10.3389/fendo.2016.00136CrossRefGoogle ScholarPubMed
Moodley, J, et al. (2016). Understanding pathways to breast cancer diagnosis among women in the Western Cape Province, South Africa: A qualitative study. BMJ Open 6(1). doi: 10.1136/bmjopen-2015-009905.CrossRefGoogle ScholarPubMed
Nagata, S, Suzuki, J, Segawa, K & Fujii, T (2016). Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23, 952961.CrossRefGoogle ScholarPubMed
Ouyang, L, et al. (2012). Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation 45(6), 487498. doi: 10.1111/j.1365-2184.2012.00845.xCrossRefGoogle ScholarPubMed
Pandya, P, Orgaz, JL & Sanz-Moreno, V (2017). Modes of invasion during tumour dissemination. Mol Oncol 11(1), 527. doi: 10.1002/1878-0261.12019CrossRefGoogle ScholarPubMed
Phuong, NTT, et al. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget 8(41), 7105471069. doi: 10.18632/oncotarget.20329CrossRefGoogle Scholar
Rieger, AM, et al. (2011). Modified annexin V/Propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 50, 36. doi: 10.3791/2597.Google Scholar
Sauvanet, C, et al. (2015). Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol 31(1), 593621. doi: 10.1146/annurev-cellbio-100814-125234CrossRefGoogle ScholarPubMed
Schmick, M & Bastiaens, PIH (2014). The interdependence of membrane shape and cellular signal processing. Cell 156(6), 11321138. doi: 10.1016/j.cell.2014.02.007CrossRefGoogle ScholarPubMed
Serebruany, VL, et al. (2015). Solid cancers after antiplatelet therapy: Confirmations, controversies, and challenges. Thromb Haemostasis 114(6), 11041112. doi: 10.1160/TH15-01-0077Google ScholarPubMed
Smeda, M, et al. (2018). Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 9(25), 1781017824. doi: 10.18632/oncotarget.24891CrossRefGoogle ScholarPubMed
Smith, SM, et al. (2011). A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS One 6(11). doi: 10.1371/journal.pone.0026908CrossRefGoogle ScholarPubMed
Synowiec, E, et al. (2015). Doxorubicin differentially induces apoptosis, expression of mitochondrial apoptosis-related genes, and mitochondrial potential in BCR-ABL1-expressing cells sensitive and resistant to Imatinib. BioMed Res Int 2015, 110. doi: 10.1155/2015/673512CrossRefGoogle ScholarPubMed
Tesfamariam, B, et al. (2016). Involvement of platelets in tumor cell metastasis. Pharmacol Ther 157, 112119. doi: 10.1016/j.pharmthera.2015.11.005CrossRefGoogle ScholarPubMed
Tobias, DK, Akinkuolie, AO, Chandler, PD, Lawler, PR, Manson, JE, Buring, JE, Ridker, PM, Wang, L, Lee, IM & Mora, S (2018). Markers of inflammation and incident breast cancer risk in the women's health study. Am J Epidemiol 187, 705716.CrossRefGoogle ScholarPubMed
Tournaviti, S, et al. (2007). SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J Cell Sci 120(21), 38203829. doi: 10.1242/jcs.011130CrossRefGoogle ScholarPubMed
Tsai, JH & Yang, J (2013). Epithelial – mesenchymal plasticity in carcinoma metastasis. 2192–2206. doi: 10.1101/gad.225334.113.2192CrossRefGoogle Scholar
Vallabhapurapu, SD, et al. (2015). Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget 6(33), 3437534388. doi: 10.18632/oncotarget.6045CrossRefGoogle ScholarPubMed
Verstraeten, SV, Mackenzie, GG & Oteiza, PI (2010). The plasma membrane plays a central role in cells response to mechanical stress. Biochim Biophys Acta 1798(9), 17391749. doi: 10.1016/j.bbamem.2010.06.010CrossRefGoogle Scholar
Viale, PH (2005). Abnormal clotting in cancer: An overview of pathophysiology and etiology. Semin Oncol Nurs 21(4 SUPPL. 1), 1220. doi:10.1016/j.soncn.2005.10.013CrossRefGoogle ScholarPubMed
Voelker, M & Hammer, M (2012). Dissolution and pharmacokinetics of a novel micronized aspirin formulation. Inflammopharmacology 20(4), 225231. doi: 10.1007/s10787-011-0099-zCrossRefGoogle ScholarPubMed
Wang, Y, et al. (2016). Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway. Sci Rep 6(April), 110. doi: 10.1038/srep24606Google ScholarPubMed
Wickman, GR, Julian, L, Mardilovich, K, Schumacher, S, Munro, J, Rath, N, Zander, SAL, Mleczak, A, Sumpton, D, Morrice, N, Bienvenut, WV & Olson, MF (2013). Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ 20, 1293–305.CrossRefGoogle ScholarPubMed
Wlodkowic, D, Telford, W, Skommer, J & Darzynkiewicz, Z (2011). Apoptosis and beyond: Cytometry in studies of programmed cell death. Methods Cell Biol 103, 5598. doi: 10.1016/B978-0-12-385493-3.00004-8CrossRefGoogle ScholarPubMed
Yang, E, et al. (2010). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt-survival pathways in breast cancer cells and suppresses tumor survival and metastasis Eric. Breast 69(15), 62236231. doi: 10.1158/0008-5472.CAN-09-0187.BlockadeGoogle Scholar
Yi, X, et al. (2016). Association of cytochrome P450 genetic variants with clopidogrel resistance and outcomes in acute ischemic stroke. J Atheroscler Thromb 23(10), 11881200. doi: 10.5551/jat.33290CrossRefGoogle ScholarPubMed
Youlden, DR, Cramb, SM, Dunn, NAM, Muller, JM, Pyke, CM & Baade, PD (2012). The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality. Cancer Epidemiol 36, 237–48.CrossRefGoogle ScholarPubMed
Zhang, Y, et al. (2018). Plasma membrane changes during programmed cell deaths. Cell Res 28(1), 921. doi: 10.1038/cr.2017.133CrossRefGoogle ScholarPubMed
Zhao, D, et al. (2013). LDH-A acetylation: implication in cancer. Oncotarget 4(6), 802–3. doi: 10.18632/oncotarget.1007CrossRefGoogle ScholarPubMed
Zou, JJ, et al. (2012). Bioequivalence study of clopidogrel 75 Mg tablets in healthy male volunteers. J Bioequivalence Bioavailab 4(1), 006009. doi: 10.4172/jbb.1000102Google Scholar