Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T19:55:42.420Z Has data issue: false hasContentIssue false

Controlled Environment Specimen Transfer

Published online by Cambridge University Press:  14 May 2014

Christian D. Damsgaard*
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark CINF, Department of Physics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
Henny Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
Thomas W. Hansen
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
Ib Chorkendorff
Affiliation:
CINF, Department of Physics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
Jakob B. Wagner
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
*
*Corresponding author. cdda@cen.dtu.dk
Get access

Abstract

Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3 catalyst for methanol synthesis and a Co/Al2O3 catalyst for Fischer–Tropsch synthesis. Both systems are sensitive to ambient atmosphere as they will oxidize after relatively short air exposure. The Cu/ZnO/Al2O3 catalyst, was reduced in the in situ X-ray diffractometer set-up, and subsequently, successfully transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ transfer holder facilitates complimentary in situ experiments of the same specimen without changing the specimen state during transfer.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asbrink, S. & Norrby, L.-J. (1970). A refinement of the crystal structure of copper(ii) oxide with a discussion of some exceptional e.s.d.’s. Acta Cryst b26, 815.Google Scholar
Baltes, C., Vukojevic, S. & Schueth, F. (2008). Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258(2), 334344.CrossRefGoogle Scholar
Bulavchenko, O.A., Cherepanova, S.V. & Tsybulya, S.V. (2009). In situ XRD investigation of Co3O4 reduction. Zeitschrift Fur Kristallographie 30, 329334.Google Scholar
Chenna, S., Banerjee, R. & Crozier, P.A. (2011). Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem 3(6), 10511059.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108(9), 993998.Google Scholar
Dehghan, R., Hansen, T.W., Wagner, J.B., Holmen, A., Rytter, E., Borg, O. & Walmsley, J.C. (2011). In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy. Catal Lett 141(6), 754761.CrossRefGoogle Scholar
Dry, M.E. (2002). High quality diesel via the Fischer–Tropsch process - a review. J Chem Tech Biot 77(1), 43101.Google Scholar
Ducreux, O., Rebours, B., Lynch, J., Roy-Auberger, M. & Bazin, D. (2009). Microstructure of supported cobalt Fischer–Tropsch catalysts. Oil Gas Sci Technol Rev IFP 64(1), 4962.Google Scholar
Foo, M.L., Huang, Q., Lynn, J.W., Lee, W.L., Klimczuk, T., Hagemann, I.S., Ong, N.P. & Cava, R.J. (2006). Synthesis, structure and physical properties of Ru ferrites: BaMRu5O11 (M=Li and Cu) and BaM2Ru4O11 (M=Mn, Fe and Co). J Solid State Chem 179(2), 563572.Google Scholar
Hansen, T.W., Wagner, J.B. & Dunin-Borkowski, R.E. (2010). Aberration corrected and monochromated environmental transmission electron microscopy: Challenges and prospects for materials science. Mater Sci Technol 26(11), 13381344.Google Scholar
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H. & Jacobsen, C.J.H. (2001). Research - reports - atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294(5546), 1508.CrossRefGoogle Scholar
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S. & Topsoe, H. (2002). Research - reports - atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science: International Edition - AAAS 295(5546), 2053.Google Scholar
Hansen, T.W. & Wagner, J.B. (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc Microanal 18(4), 684690.Google Scholar
Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. & Nørskov, J.K. (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426429.Google Scholar
Kim, S.M., Pint, C.L., Amama, P.B., Zakharov, D.N., Hauge, R.H., Maruyama, B. & Stach, E.A. (2010). Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1(6), 918922.Google Scholar
Kooyman, P.J., Hensen, E.J.M., de Jong, A.M., Niemantsverdriet, J.W. & van Veen, J.A.R. (2001). The observation of nanometer-sized entities in sulphided Mo-based catalysts on various supports. Catal Lett 74(1-2), 4953.CrossRefGoogle Scholar
Laffont, L., Wu, M.Y., Chevallier, F., Poizot, P., Morcrette, M. & Tarascon, J.M. (2006). High resolution EELS of Cu-V oxides: Application to batteries materials. Micron 37(5), 459464.Google Scholar
Otte, H.M. (1961). Lattice parameter determinations with an X-ray spectrogoniometer by the Debye–Scherrer method and the effect of specimen condition. J Appl Phys 32(8), 15361546.Google Scholar
Simonsen, S.B., Chorkendorff, I.B., Dahl, S., Skoglundh, M., Sehested, J. & Helveg, S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132(23), 79687975.CrossRefGoogle ScholarPubMed
Troiano, A.R. & Tokich, J.L. (1948). The transformation of cobalt. Trans Am Inst Mining Eng 175, 728741.Google Scholar
van Huis, M.A., Young, N.P., Pandraud, G., Fredrik, C.J., Vanmaekelbergh, D., Kirkland, A.I. Zandbergen, H.W. (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21(48), 49924995.Google Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B. & Zandbergen, H. (2012). In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C Ultramicroscopy 112(1), 4752.Google Scholar
Yoshida, H., Uchiyama, T., Moor, M., de Stekelenburg, M. & Takeda, S. (2007). In-situ ETEM analysis of growth mechanism of carbon nanotubes. Microsc Microanal 13(Suppl 2), 712713.Google Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M. & Takeda, S. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335(6066), 317319.Google Scholar