No CrossRef data available.
Article contents
Direct Observation of Threading Dislocations in Gan by High Resolution z-contrast imaging
Published online by Cambridge University Press: 02 July 2020
Extract
Wide gap nitride semiconductors have attracted significant attention recently due to their promising performance as short-wavelength light emitting diodes (LEDs) and blue lasers. One interesting issue concerning GaN is that the material is relatively insensitive to the presence of a density of dislocations which is six orders of magnitude higher than that for III-V arsenide and phosphide based LEDs. Although it is well known that these dislocations originate at the film-substrate interface during film growth, thread through the whole epilayer with line direction along <0001> and are perfect dislocations with Burgers vectors of a, c, or c+a, the reason why they have such a small effect on the properties of GaN is unclear.
To develop a fundamental understanding of the properties of these dislocations, the core structures are studied here by high resolution Z-contrast imaging in a 300kV VG HB603 scanning transmission electron microscope (STEM) with a resolution of 0.13nm.
- Type
- Microscopy of Semiconducting and Superconducting Materials
- Information
- Copyright
- Copyright © Microscopy Society of America