Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T10:09:28.930Z Has data issue: false hasContentIssue false

Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation of Neighboring Biological Structures

Published online by Cambridge University Press:  04 January 2012

Jay Blatnik
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Lanette Luebke
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Stephanie Simonet
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Megan Nelson
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Race Price
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Rachael Leek
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
Leyong Zeng
Affiliation:
Division of Functional Materials and Nano Devices, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Aiguo Wu
Affiliation:
Division of Functional Materials and Nano Devices, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Eric Brown*
Affiliation:
Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
*
Corresponding author. E-mail: browne@uww.edu
Get access

Abstract

Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

REFERENCES

Arsac, F. & Hidaka, H. (2007). DNA damage photoinduced by titanium dioxide in the presence of anionic vesicles under UV illumination: Influence of sodium chloride concentration. J Oleo Sci 56(11), 595601.CrossRefGoogle ScholarPubMed
Ashikaga, T., Wada, M., Kobayashi, H., Mori, M., Katsumura, Y., Fukui, H., Kato, S., Yamaguchi, M. & Takamatsu, T. (2000). Effect of the photocatalytic activity of TiO(2) on plasmid DNA. Mutat Res 466(1), 17.CrossRefGoogle ScholarPubMed
Brown, E.M., Paunesku, T., Wu, A., Thurn, K.T., Haley, B., Clark, J., Priester, T. & Woloschak, G.E. (2008). Methods for assessing DNA hybridization of peptide nucleic acid-titanium dioxide nanoconjugates. Anal Biochem 383(2), 226235.CrossRefGoogle ScholarPubMed
Chen, E., Ruvalcaba, M., Araujo, L., Chapman, R. & Chin, W.C. (2008). Ultrafine titanium dioxide nanoparticles induce cell death in human bronchial epithelial cells. J Exp Nanosci 3(3), 171183.CrossRefGoogle Scholar
Craig, C.F., Duncan, W.R. & Prezhdo, O.V. (2005). Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics. Phys Rev Lett 95(16), 163001.CrossRefGoogle ScholarPubMed
Gole, J.L., Stout, J.D., Burda, C., Lou, Y.B. & Chen, X.B. (2004). Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108(4), 12301240.CrossRefGoogle Scholar
Hall, E.J. & Giaccia, A. (2006). Physics and chemistry of radiation absorption. In Radiobiology for the Radiologist, Chap. 1, pp. 515. Philadelphia, PA: Lippincott Wilkins & Williams.Google Scholar
Hashimoto, K., Irie, H. & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japan J Appl Phys 1 44(12), 82698285.CrossRefGoogle Scholar
Huber, R.S., Moser, J.E., Gratzel, M. & Wachtveitl, J. (2000). The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J Phys Chem B 104, 89959003.CrossRefGoogle Scholar
Liu, G.L., Li, X., Zhao, J., Horikoshi, S. & Hidaka, H. (2000). Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: An experimental and theoretical examination. J Molec Catal A 153, 221229.CrossRefGoogle Scholar
Liu, G., Wu, T., Zhao, J., Hidaka, H. & Serpone, N. (1999). Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ Sci Technol 33(12), 20812087.CrossRefGoogle Scholar
Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V. & Veronesi, B. (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14), 43464352.CrossRefGoogle ScholarPubMed
Michelmore, A., Gong, W.Q., Jenkins, P. & Ralston, J. (2000). The interaction of linear polyphosphates with titanium dioxide surfaces. Phys Chem Chem Phys 2(13), 29852992.CrossRefGoogle Scholar
Moan, J. (1990). On the diffusion length of singlet oxygen in cells and tissue. Photochem Photobiol B 6, 343347.CrossRefGoogle Scholar
Niedre, M., Patterson, M.S. & Wilson, B.C. (2002). Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol 75, 382391.CrossRefGoogle ScholarPubMed
Park, E.J., Yi, J., Chung, K.H., Ryu, D.Y., Choi, J. & Park, K. (2008). Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3), 222229.CrossRefGoogle ScholarPubMed
Paunesku, T., Ke, T., Dharmakumar, R., Mascheri, N., Wu, A., Lai, B., Vogt, S., Maser, J., Thurn, K., Szolc-Kowalska, B., Larson, A., Bergan, R.C., Omary, R., Li, D., Lu, Z.R. & Woloschak, G.E. (2008). Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine 4(3), 201207.CrossRefGoogle ScholarPubMed
Paunesku, T., Rajh, T., Wiederrecht, G., Maser, J., Vogt, S., Stojicevic, N., Protic, M., Lai, B., Oryhon, J., Thurnauer, M. & Woloschak, G. (2003). Biology of TiO2-oligonucleotide nanocomposites. Nat Mater 2(5), 343346.CrossRefGoogle ScholarPubMed
Paunesku, T., Vogt, S., Lai, B., Maser, J., Stojicevic, N., Thurn, K.T., Osipo, C., Liu, H., Legnini, D., Wang, Z., Lee, C. & Woloschak, G.E. (2007). Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett 7(3), 596601.CrossRefGoogle ScholarPubMed
Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C. & Tiede, D.M. (2002). Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J Phys Chem B 106(41), 1054310552.CrossRefGoogle Scholar
Rajh, T., Poluektov, O., Dubinski, A.A., Wiederrecht, G., Thurnauer, M.C. & Trifunac, A.D. (2001). Spin polarization mechanisms in early stages of photoinduced charge separation in surface-modified TiO2 nanoparticles. Chem Phys Lett 344(1-2), 3139.CrossRefGoogle Scholar
Rajh, T., Saponijc, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Curtiss, L.A. & Thurnauer, M.C. (2004). Charge transfer across the nanocrystalline-DNA interface: Probing DNA recognition. Nano Lett 4(6), 10171023.CrossRefGoogle Scholar
Sugden, J.K. (2004). Photochemistry of dyes and fluorochromes used in biology and medicine: Some physicochemical background and current applications. Biotech Histochem 79(2), 7190.CrossRefGoogle ScholarPubMed
Sugden, K.D., Rigby, K.M. & Martin, B.D. (2004). Oxidative activation of the human carcinogen chromate by arsenite: A model for synergistic metal activation leading to oxidative DNA damage. Toxicol In Vitro 18(6), 741748.CrossRefGoogle Scholar
Thevenot, P., Cho, J., Wavhal, D., Timmons, R.B. & Tang, L.P. (2008). Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed-Nanotechnol 4(3), 226236.CrossRefGoogle ScholarPubMed
Thurn, K.T., Arora, H., Paunesku, T., Wu, A., Brown, E.M., Doty, C., Kremer, J. & Woloschak, G. (2011). Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine 7(2), 123130.CrossRefGoogle ScholarPubMed
Thurn, K.T., Paunesku, T., Wu, A., Brown, E.M.B., Lai, B., Vogt, S., Maser, J., Aslam, M., Dravid, V., Bergan, R. & Woloschak, G. (2009). Labeling TiO(2) nanoparticles with dyes for optical fluorescence microscopy and determination of TiO(2) DNA nanoconjugate stability. Small 5(11), 13181325.CrossRefGoogle Scholar
Tsuang, Y.H., Sun, J.S., Huang, Y.C., Lu, C.H., Chang, W.H.S. & Wang, C.C. (2008). Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32(2), 167174.CrossRefGoogle ScholarPubMed
Wu, A., Paunesku, T., Brown, E.M.B., Babbo, A., Cruz, C., Aslam, M., Dravid, V. & Woloschak, G.E. (2008). Titanium dioxide nanoparticles assembled by DNA molecules hybridization and loading of DNA interacting proteins. Nano 3(1), 2736.CrossRefGoogle Scholar
Zhang, L., Dong, S. & Zhu, L. (2007). Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. Chem Commun (Camb) 19, 18911893.CrossRefGoogle Scholar