Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T02:55:52.446Z Has data issue: false hasContentIssue false

The Effect of Oxide Overlayers on Secondary Electron Dopant Mapping

Published online by Cambridge University Press:  22 May 2009

Maurizio Dapor
Affiliation:
Fondazione Bruno Kessler, Centre for Materials and Microsystems, Via Sommarive, 18, Povo (Trento) I38050, Italy
Mark A.E. Jepson*
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, South Yorkshire S1 3JD, United Kingdom
Beverley J. Inkson
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, South Yorkshire S1 3JD, United Kingdom
Cornelia Rodenburg
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield, South Yorkshire S1 3JD, United Kingdom
*
Corresponding author. E-mail: m.jepson@sheffield.ac.uk
Get access

Abstract

The International Technology Roadmap for Semiconductors ranks dopant profiling as one of the most difficult challenges for analysis of semiconductors. Dopant mapping in the scanning electron microscope (SEM) has the potential to provide a solution. This technique has not yet found widespread application, however, mainly due to the lack of a comprehensive theoretical model, uncertain quantification, and its inability to differentiate doping levels in n-type silicon. Although a Monte Carlo model was recently published that closely matched experimental data obtained in p-doped silicon to data obtained from the theoretical model, a large discrepancy between experimental data obtained for n-type silicon was found. Here we present a Monte Carlo model that provides close matches between experimental and calculated data in both n- and p-type silicon, paving the way for a widespread application of SEM dopant contrast.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Calliari, L., Fachenko, S. & Filippi, M. (2007). Plasmon features in electron energy loss spectra from carbon materials. Carbon 45, 14101418.CrossRefGoogle Scholar
Calliari, L., Filippi, M., Laidani, N. & Anderle, M. (2006). The electronic structure of carbon films deposited in r.f. argon-hydrogen plasma. J Electron Spectr Relat Phenomena 150, 4046.CrossRefGoogle Scholar
Castell, M.R., Muller, D.A. & Voyles, P.M. (2003). Dopant mapping for the nanotechnology age. Nat Mater 2, 129131.CrossRefGoogle ScholarPubMed
Chang, T.H.P. & Nixon, W.C. (1967). Electron beam induced potential contrast on unbiased planar transistors. Solid-State Electron 10, 701704.CrossRefGoogle Scholar
Coad, J.P., Bishop, H.E. & Riviere, J.C. (1970). Electron-beam assisted adsorption on the Si(111) surface. Surf Sci 21, 253264.CrossRefGoogle Scholar
Dapor, M. (1996). Elastic scattering calculations for electrons and positrons in solid targets. J Appl Phys 79, 84068411.CrossRefGoogle Scholar
Dapor, M. (2003). Electron-Beam Interactions with Solids: Application of the Monte-Carlo Method to Electron Scattering Problems. Berlin: Springer.CrossRefGoogle Scholar
Dapor, M. (2006). Energy loss spectra of low primary energy (E0 ≦ 1 keV) electrons backscattered by silicon dioxide. Surf Sci 600, 47284734.CrossRefGoogle Scholar
Dapor, M., Calliari, L. & Filippi, M. (2007). Computational and experimental study of π and π + σ plasmon loss spectra for low energy (<1000 eV) electrons impinging on highly oriented pyrolitic graphite (HOPG). Nucl Instrum Methods Phys Res B 255, 276280.CrossRefGoogle Scholar
Dapor, M., Inkson, B.J., Rodenburg, C. & Rodenburg, J.M. (2008). A comprehensive Monte-Carlo calculation of dopant contrast in secondary-electron imaging. Europhys Lett 82, 30006-130006-5.CrossRefGoogle Scholar
Dionne, G.F. (1975). Origin of secondary-electron-emission yield-curve parameters. J Appl Phys 46, 33473351.CrossRefGoogle Scholar
Duhayon, M., Eyber, P., Fouchier, M., Clarysee, T., Vandervorst, W., Alvarez, D., Schoemann, S., Ciappa, M., Stangoni, M., Fichtner, W., Formanek, P., Kittler, M., Raineri, V., Giannazzo, F., Goghero, D., Rosenwaks, Y., Shikler, R., Saraf, S., Sadewasser, S., Barreau, N., Glatzel, T., Verheijen, M., Mentink, S.A., Von Sprekelsen, M., Maltezopoulos, T., Wiesendanger, R. & Hellemans, L. (2004). Assessing the performance of two-dimensional dopant profiling techniques. J Vac Sci Technol B 22, 385393.CrossRefGoogle Scholar
Duraud, J.P., Le Moel, A., Le Gressus, C., Pantel, R., Chornik, B. (1984). Contrast of a P-N junction in ultra-high vacuum scanning electron microscopy. Scanning Microsc 1, 4954.Google Scholar
El-Gomati, M.M. & Wells, T.C.R. (2001). Very-low-energy electron microscopy of doped semiconductors. Appl Phys Lett 79, 29312933.CrossRefGoogle Scholar
El-Gomati, M.M., Wells, T.C.R., Müllerová, I., Frank, L. & Jayacody, H. (2004). Why is it that differently doped regions in semiconductors are visible in the low voltage SEM? IEEE Trans Electron Dev 51(2), 288292.CrossRefGoogle Scholar
El-Gomati, M., Zaggout, Z., Jayacody, H., Tear, S. & Wilson, K. (2005). Why is it possible to detect doped regions of semiconductors in low voltage SEM: A review and update. Surf Interface Anal 37, 901911.CrossRefGoogle Scholar
Elliott, S.L., Broom, R.F. & Humphreys, C.J. (2002). Dopant profiling with the scanning electron microscope—A study of Si. J Appl Phys 91, 91169122.CrossRefGoogle Scholar
Filippi, M., Calliari, L. & Dapor, M. (2007). Joint experimental and computational study of silicon dioxide electron energy loss spectra. Phys Rev B 75, 125406.CrossRefGoogle Scholar
Frank, L. & Müllerová, I. (2005). The injected-charge contrast mechanism in scanned imaging of doped semiconductors by very slow electrons. Ultramicroscopy 106, 2836.CrossRefGoogle ScholarPubMed
Frank, L., Müllerová, I., Valdaitsev, D., Goloskovskii, A., Nepijeko, S.A., Elmers, H.-J. & Schönhense, G. (2006). The origin of contrast in the imaging of doped areas in silicon by slow electrons. J Appl Phys 100, 093712.CrossRefGoogle Scholar
Goodhew, P.J., Humphreys, J. & Beanland, R. (2001). Electron Microscopy and Analysis, Third Edition. London: Taylor and Francis.Google Scholar
ITRS (2007). The International Technology Roadmap for Semiconductors [www.itrs.net]. San Jose, CA: Semiconductor Industry Association.Google Scholar
Jablonski, A., Salvat, F. & Powell, C.J. (2004). Comparison of electron elastic-scattering cross sections calculated from two commonly used atomic potentials. J Phys Chem Ref Data 33, 409451.CrossRefGoogle Scholar
Mika, F. & Frank, L. (2008). Two-dimensional dopant profiling with low-energy SEM. J Microsc Oxford 230, 7683.CrossRefGoogle ScholarPubMed
Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. & Ohwada, M. (1990). Growth of native oxide on a silicon surface. J Appl Phys 68, 12721281.CrossRefGoogle Scholar
Müllerová, I., El-Gomati, M.M. & Frank, L. (2002). Imaging of the boron doping in silicon using low energy SEM. Ultramicroscopy 93, 223243.CrossRefGoogle Scholar
Perovic, D.D., Castell, M.R., Howie, A., Lavoie, C., Tiedje, T. & Cole, J.S.W. (1995). Field emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58, 104113.CrossRefGoogle Scholar
Raider, S.I., Flitsch, R. & Palmer, M.J. (1975). Oxide-growth on etched silicon in air at room-temperature. J Electrochem Soc 122, 413418.CrossRefGoogle Scholar
Ritchie, R.H. (1957). Spatial distribution of energy absorbed from an electron beam penetrating aluminium. Phys Rev 106, 874881.CrossRefGoogle Scholar
Ritchie, R.H. & Howie, A. (1977). Electron-excitation and optical-potential in electron-microscopy. Philos Mag 36, 463481.CrossRefGoogle Scholar
Schönjahn, C., Humphreys, C.J. & Glick, M. (2002). Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors. J Appl Phys 92, 76677671.CrossRefGoogle Scholar