Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T13:34:57.923Z Has data issue: false hasContentIssue false

High-Resolution Optical Imaging of Zebrafish Larval Ribbon Synapse Protein RIBEYE, RIM2, and CaV 1.4 by Stimulation Emission Depletion Microscopy

Published online by Cambridge University Press:  26 July 2012

Caixia Lv
Affiliation:
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
Travis J. Gould
Affiliation:
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
Joerg Bewersdorf
Affiliation:
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
David Zenisek*
Affiliation:
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT 06520, USA Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA Center for Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
*
Corresponding author. E-mail: david.zenisek@yale.edu
Get access

Abstract

The synaptic ribbon is a unique presynaptic structure with an intricate morphology in photoreceptors. Because of the resolution limit in conventional fluorescence microscopy, investigating ribbon protein locations has been challenging, especially in the early development stages of model animals. Here, we used stimulated emission depletion microscopy, a super-resolution imaging technique, to look at retina sections in 4 days post-fertilization (dpf) zebrafish. We observed that in photoreceptor cells, RIBEYE and RIM2 are expressed along the synaptic ribbon, with RIM2 consistently located inside of the horseshoe-shaped synaptic ribbon structure with RIBEYE located on the outside. The L-type calcium channel subunit, CACNA1F, exhibited small spot-like staining beneath the RIM2 and RIBEYE structures. Using morpholino antisense oligonucleotides to knock down RIBEYE expression, we observed fewer and shorter ribbons in the photoreceptor outer plexiform layers of 4 dpf fish retina as well as a reduction in RIM2 expression. The clustering of CACNA1F in these blind fish was no longer observed, but instead showed a diffuse expression in the photoreceptor terminal.

Type
Special Section: Seventh Omaha Imaging Symposium
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpadi, K., Magupalli, V.G., Kappel, S., Koblitz, L., Schwarz, K., Seigel, G.M., Sung, C.H. & Schmitz, F. (2008). RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses. J Biol Chem 283, 2646126467.CrossRefGoogle ScholarPubMed
Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A. & Ekker, S.C. (2009). A primer for morpholino use in zebrafish. Zebrafish 6, 6977.CrossRefGoogle ScholarPubMed
Brandstatter, J.H., Fletcher, E.L., Garner, C.C., Gundelfinger, E.D. & Wassle, H. (1999). Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. Euro J Neurosci 11, 36833693.CrossRefGoogle ScholarPubMed
Cui, G., Meyer, A.C., Calin-Jageman, I., Neef, J., Haeseleer, F., Moser, T. & Lee, A. (2007). Ca2+-binding proteins tune Ca2+-feedback to Cav1.3 channels in mouse auditory hair cells. J Physiol 585, 791803.CrossRefGoogle ScholarPubMed
Dick, O., Hack, I., Altrock, W.D., Garner, C.C., Gundelfinger, E.D. & Brandstatter, J.H. (2001). Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon. J Comp Neurol 439, 224234.CrossRefGoogle ScholarPubMed
Dick, O., tom Dieck, S., Altrock, W.D., Ammermuller, J., Weiler, R., Garner, C.C., Gundelfinger, E.D. & Brandstatter, J.H. (2003). The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775786.CrossRefGoogle ScholarPubMed
Frank, T., Rutherford, M.A., Strenzke, N., Neef, A., Pangrsic, T., Khimich, D., Fejtova, A., Gundelfinger, E.D., Liberman, M.C., Harke, B., Bryan, K.E., Lee, A., Egner, A., Riedel, D. & Moser, T. (2010). Bassoon and the synaptic ribbon organize Ca(2)+ channels and vesicles to add release sites and promote refilling. Neuron 68, 724738.CrossRefGoogle Scholar
Goll, M.G., Anderson, R., Stainier, D.Y., Spradling, A.C. & Halpern, M.E. (2009). Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182, 747755.CrossRefGoogle ScholarPubMed
Hell, S.W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Lett 19, 780782.CrossRefGoogle ScholarPubMed
Hibino, H., Pironkova, R., Onwumere, O., Vologodskaia, M., Hudspeth, A.J. & Lesage, F. (2002). RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels. Neuron 34, 411423.CrossRefGoogle ScholarPubMed
Kaeser, P.S., Deng, L., Wang, Y., Dulubova, I., Liu, X., Rizo, J. & Sudhof, T.C. (2011). RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282295.CrossRefGoogle Scholar
Katsumata, O., Ohara, N., Tamaki, H., Niimura, T., Naganuma, H., Watanabe, M. & Sakagami, H. (2009). IQ-ArfGEF/BRAG1 is associated with synaptic ribbons in the mouse retina. Euro J Neurosci 30, 15091516.CrossRefGoogle ScholarPubMed
Morgans, C.W. (2001). Localization of the alpha(1F) calcium channel subunit in the rat retina. Inv Ophthalmol Visual Sci 42, 24142418.Google ScholarPubMed
Morgans, C.W., Gaughwin, P. & Maleszka, R. (2001). Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina. Mol Vision 7, 202209.Google ScholarPubMed
Muresan, V., Lyass, A. & Schnapp, B.J. (1999). The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J Neurosci 19, 10271037.CrossRefGoogle ScholarPubMed
Nagerl, U.V. & Bonhoeffer, T. (2010). Imaging living synapses at the nanoscale by STED microscopy. J Neurosci 30, 93419346.CrossRefGoogle ScholarPubMed
Nasevicius, A. & Ekker, S.C. (2000). Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26, 216220.CrossRefGoogle ScholarPubMed
Prescott, E.D. & Zenisek, D. (2005). Recent progress towards understanding the synaptic ribbon. Curr Opin Neurobiol 15, 431436.CrossRefGoogle ScholarPubMed
Rizo, J. & Rosenmund, C. (2008). Synaptic vesicle fusion. Nat Struct Molec Biol 15, 665674.CrossRefGoogle ScholarPubMed
Schmitz, F., Konigstorfer, A. & Sudhof, T.C. (2000). RIBEYE, a component of synaptic ribbons: A protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857872.CrossRefGoogle ScholarPubMed
Sheets, L., Trapani, J.G., Mo, W., Obholzer, N. & Nicolson, T. (2011). Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development 138, 13091319.CrossRefGoogle ScholarPubMed
Sjostrand, F.S. (1958). Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2, 122170.CrossRefGoogle ScholarPubMed
Snellman, J., Mehta, B., Babai, N., Bartoletti, T.M., Akmentin, W., Francis, A., Matthews, G., Thoreson, W. & Zenisek, D. (2011). Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat Neurosci 14, 11351141.CrossRefGoogle ScholarPubMed
Sterling, P. & Matthews, G. (2005). Structure and function of ribbon synapses. Trends Neurosci 28, 2029.CrossRefGoogle ScholarPubMed
tom Dieck, S., Altrock, W.D., Kessels, M.M., Qualmann, B., Regus, H., Brauner, D., Fejtova, A., Bracko, O., Gundelfinger, E.D. & Brandstatter, J.H. (2005). Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168, 825836.CrossRefGoogle ScholarPubMed
Venkatesan, J.K., Natarajan, S., Schwarz, K., Mayer, S.I., Alpadi, K., Magupalli, V.G., Sung, C.H. & Schmitz, F. (2010). Nicotinamide adenine dinucleotide-dependent binding of the neuronal Ca2+ sensor protein GCAP2 to photoreceptor synaptic ribbons. J Neurosci 30(19), 65596576.CrossRefGoogle ScholarPubMed
Wan, L., Almers, W. & Chen, W. (2005). Two ribeye genes in teleosts: The role of Ribeye in ribbon formation and bipolar cell development. J Neurosci 25, 941949.CrossRefGoogle ScholarPubMed
Wilhelm, B.G., Groemer, T.W. & Rizzoli, S.O. (2010). The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 13, 14541456.CrossRefGoogle ScholarPubMed
Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935939.CrossRefGoogle ScholarPubMed
Zanazzi, G. & Matthews, G. (2009). The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol 39, 130148.CrossRefGoogle ScholarPubMed
Zenisek, D., Horst, N.K., Merrifield, C., Sterling, P. & Matthews, G. (2004). Visualizing synaptic ribbons in the living cell. J Neurosci 24, 97529759.CrossRefGoogle ScholarPubMed