Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T18:42:03.877Z Has data issue: false hasContentIssue false

Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography

Published online by Cambridge University Press:  18 November 2014

Changlin Zheng
Affiliation:
Institute of Physics, Humboldt University of Berlin, D-12489 Berlin, Germany
Holm Kirmse
Affiliation:
Institute of Physics, Humboldt University of Berlin, D-12489 Berlin, Germany
Jianguo Long
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
David E. Laughlin
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Michael E. McHenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Wolfgang Neumann*
Affiliation:
Institute of Physics, Humboldt University of Berlin, D-12489 Berlin, Germany Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
*
Get access

Abstract

The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Monash Centre for Electron Microscopy, Monash University, Victoria 3800, Australia

References

Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. (1990 a). Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 1. Theory. J Appl Phys 68(6), 29012907.CrossRefGoogle Scholar
Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. (1990 b). Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 2. Experiments. J Appl Phys 68(6), 29082915.CrossRefGoogle Scholar
Argyle, B.E. & Terrenzio, E. (1984). Magneto-optic observation of bloch lines. J Appl Phys 55(6), 25692571.Google Scholar
Barkhausen, H. (1919). Zwei mit hilfe der neuen vers $\"{\rm t}$ arker entdeckte erscheinugen. Physik Zeitschrift 20, 401403.Google Scholar
Beleggia, M. & Zhu, Y. (2005). Transmission electron microscopy. In Modern Techniques for Characterizing Magnetic Materials, Zhu, Y. (Ed.), pp. 267326. Boston: Kluwer Academic Publishers.Google Scholar
Chapman, J.N. (1984). The investigation of magnetic domain-structures in thin foils by electron-microscopy. J Phys D Appl Phys 17(4), 623647.Google Scholar
De Graef, M. (2001). Lorentz microscopy: Theoretical basis and image simulations. In Magnetic Imaging and Its Applications to Materials (Experimental Methods in the Physical Sciences, vol. 36), Graef, M.D. & Zhu, Y. (Eds.), pp. 2767. San Diego: Academic Press.Google Scholar
Dunin-Borkowski, R.E., Kasama, T., Beleggia, M. & Pozzi, G. (2012). Lorentz microscopy and electron holography of magnetic materials. In Handbook of Nanoscopy, Tendeloo, G.V., Van Dyck, D. & Pennycook, S.J. (Eds.), pp. 221252. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy In The Electron Microscope. New York: Plenum Press.Google Scholar
Gallagher, K.A., Willard, M.A., Zabenkin, V.N., Laughlin, D.E. & McHenry, M.E. (1999). Distributed exchange interactions and temperature dependent magnetization in amorphous Fe88-xCoxZr7B4Cu1 alloys. J Appl Phys 85(8), 51305132.Google Scholar
Hale, M.E., Fuller, H.W. & Rubinstein, H. (1959). Magnetic domain observations by electron microscopy. J Appl Phys 30(5), 789791.Google Scholar
Herzer, G. (1992). Nanocrystalline soft magnetic-materials. J Magn Magn Mater 112(1–3), 258262.CrossRefGoogle Scholar
Herzer, G. (1993). Nanocrystalline soft-magnetic materials. Phys Scripta T49a, 307314.CrossRefGoogle Scholar
Herzer, G. (1997). Nanocrystalline soft magnetic alloys. Handb Magn Mater 10, 415462.CrossRefGoogle Scholar
Herzer, G. (2013). Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater 61(3), 718734.Google Scholar
Hiraga, K. & Kohmoto, O. (1991). Microstructure of Fe-Cu-Nb-Si-B soft magnetic-alloys studied by transmission electron-microscopy. Mater T Jim 32(9), 868871.Google Scholar
Johnson, F., Um, C.Y., McHenry, M.E. & Garmestani, H. (2006). The influence of composition and field annealing on magnetic properties of FeCo-based amorphous and nanocrystalline alloys. J Magn Magn Mater 297(2), 9398.Google Scholar
Lichte, H., Formanek, P., Lenk, A., Linck, M., Matzeck, C., Lehmann, M. & Simon, P. (2007). Electron holography: Applications to materials questions. Annu Rev Mater Res 37, 539588.CrossRefGoogle Scholar
Lichte, H. & Lehmann, M. (2008). Electron holography - basics and applications. Rep Prog Phys 71(1), 016102.Google Scholar
Long, J.G., McHenry, M., Urciuoli, D.P., Keylin, V., Huth, J. & Salem, T.E. (2008). Nanocrystalline material development for high-power inductors. J Appl Phys 103(7), 07E705.Google Scholar
Long, J.G., Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., Ohkubo, T. & Hono, K. (2007). Structural studies of secondary crystallization products of the Fe23B6-type in a nanocrystalline FeCoB-based alloy. J Appl Phys 101(9), 09N114.Google Scholar
MacLaren, J.M., Schulthess, T.C., Butler, W.H., Sutton, R. & McHenry, M. (1999). Electronic structure, exchange interactions, and curie temperature of FeCo. J Appl Phys 85(8), 48334835.Google Scholar
Martin, Y. & Wickramasinghe, H.K. (1987). Magnetic imaging by force microscopy with 1000-a resolution. Appl Phys Lett 50(20), 14551457.CrossRefGoogle Scholar
McCartney, M.R. & Smith, D.J. (2007). Electron holography: Phase imaging with nanometer resolution. Annu Rev Mater Res 37, 729767.CrossRefGoogle Scholar
McHenry, M.E., Willard, M.A., Iwanabe, H., Sutton, R.A., Turgut, Z., Hsiao, A. & Laughlin, D.E. (1999 a). Nanocrystalline materials for high temperature soft magnetic applications: A current prospectus. B Mater Sci 22(3), 495501.Google Scholar
McHenry, M.E., Willard, M.A. & Laughlin, D.E. (1999 b). Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44(4), 291433.Google Scholar
Ohodnicki, P.R., Qin, Y.L., McHenry, M.E., Laughlin, D.E. & Keylin, V. (2010). Transmission electron microscopy study of large field induced anisotropy (Co1-xFex)(89)Zr7B4 nanocomposite ribbons with dilute Fe-contents. J Magn Magn Mater 322(3), 315321.Google Scholar
Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., McHenry, M.E. & Laughlin, D.E. (2001). Microstructural characterization of (Fe0.5Co0.5)(88)Zr7B4Cu1 nanocrystalline alloys. Scripta Mater 45(7), 781786.Google Scholar
Pozzi, G. (2002). Electron holography of long-range electromagnetic fields: A tutorial. Adv Imag Elect Phys 123, 207223.CrossRefGoogle Scholar
Saenz, J.J., Garcia, N., Grutter, P., Meyer, E., Heinzelmann, H., Wiesendanger, R., Rosenthaler, L., Hidber, H.R. & Gunterodt, H.J. (1987). Observation of magnetic forces by the atomic force microscope. J Appl Phys 62(10), 42934295.Google Scholar
Shen, S., DeGeorge, V., Ohodnicki, P.R., Kernion, S.J., Keylin, V., Huth, J.F. & McHenry, M.E. (2014). Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence. J Appl Phys 115(17), 17A335.Google Scholar
Shindo, D. & Oikawa, T. (2002). Analytical Electron Microscopy for Materials Science. Tokyo; Berlin: Springer.CrossRefGoogle Scholar
Shindo, D., Park, Y.G. & Yoshizawa, Y. (2002). Magnetic domain structures of Fe73.5Cu1Nb3Si13.5B9 films studied by electron holography. J Magn Magn Mater 238(1), 101108.CrossRefGoogle Scholar
Snoeck, E., Gatel, C., Lacroix, L.M., Blon, T., Lachaize, S., Carrey, J., Respaud, M. & Chaudret, B. (2008). Magnetic configurations of 30 nm iron nanocubes studied by electron holography. Nano Lett 8(12), 42934298.Google Scholar
Tanigaki, T., Inada, Y., Aizawa, S., Suzuki, T., Park, H.S., Matsuda, T., Taniyama, A., Shindo, D. & Tonomura, A. (2012). Split-illumination electron holography. Appl Phys Lett 101(4), 043101.Google Scholar
Tonomura, A. (1999). Electron Holography. Berlin; New York: Springer.CrossRefGoogle Scholar
Yoshizawa, Y., Oguma, S. & Yamauchi, K. (1988). New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J Appl Phys 64(10), 60446046.Google Scholar