Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:29:40.652Z Has data issue: false hasContentIssue false

Magnetic Force Microscopy Study of Multiscale Ion-Implanted Platinum in Silica Glass, Recorded by an Ultrafast Two-Wave Mixing Configuration

Published online by Cambridge University Press:  13 December 2019

David Torres-Torres*
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. Unidad Monterrey, Apodaca, Nuevo León66600, México
Jhovani Bornacelli
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México07738, México
Oscar Vega-Becerra
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. Unidad Monterrey, Apodaca, Nuevo León66600, México
Andres M. Garay-Tapia
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. Unidad Monterrey, Apodaca, Nuevo León66600, México
Francisco S. Aguirre-Tostado
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. Unidad Monterrey, Apodaca, Nuevo León66600, México
Carlos Torres-Torres
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México07738, México
Alicia Oliver
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México04510, México
*
*Author for Correspondence: David Torres-Torres, E-mail: david.torres@cimav.edu.mx
Get access

Abstract

This study explores magnetization exhibited by nanoscale platinum-based structures embedded in pure silica plates. A superposition of laser pulses in the samples produced periodic linear arrangements of micro-sized structures. The samples were integrated by PtO2 microstructures (PtOΣs) with dispersed Pt oxide nanoparticles in their surroundings. The characterization of the materials was performed by high transmission electron microscopy studies. Furthermore, topographical and magnetic effects on the sample surfaces were analyzed by atomic force microscopy and magnetic force microscopy, respectively. The magnetic measurements indicated an enhancement in the gradient phase shift and in the gradient force related to the magnetic PtOΣs. The possibility of tuning the magnetic characteristics of the samples through contact with a Nd2Fe14B magnet was demonstrated. This process corresponds to an innovative method for obtaining magnetic PtOΣs induced by laser pulses. Moreover, an increase in the compactness of the silica with platinum-based structures was confirmed by an evaluation of the effective elastic modulus with reference to pure silica. The multimodal magnetic structures studied in this work seem to be candidates for developing high-density magnetic storage media.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Hongyu, Kanno, Yusuke, Asami, Akio & Ando, Kazuya (2018). Giant spin-torque generation by heavily oxidized Pt. Physical Review B 98(1). http://dx.doi.org/10.1103/PhysRevB.98.014401.CrossRefGoogle Scholar
Bedanta, Subhankar & Kleemann, Wolfgang (2009). Supermagnetism. Journal of Physics D: Applied Physics 42(1), 013001. http://dx.doi.org/10.1088/0022-3727/42/1/013001.CrossRefGoogle Scholar
Berkowitz, AE & Kneller, E (1969). Magnetism and Metallurgy, p. 365. New York, NY: Academic Press Inc.Google Scholar
Biener, Jürgen, Wittstock, Arne, Baumann, Theodore, Weissmüller, Jörg, Bäumer, Marcus & Hamza, Alex (2009). Surface Chemistry in Nanoscale Materials. Materials 2(4), 24042428. http://dx.doi.org/10.3390/ma2042404.CrossRefGoogle Scholar
Brajesh, Kumar Kaushik (2018). Advanced Nanomaterials. Elsevier. pp. 433451. ISBN: 978-0-12-813353-8, http://dx.doi.org/10.1016/C2016-0-04936-7.Google Scholar
Choi, Yong-June, Park, Hyeong-Ho, Kim, Hyuncheol, Park, Hyung-Ho, Chang, Ho Jung & Jeon, Hyeongtag (2009). Fabrication and Characterization of Direct-Patternable ZnO Films Containing Pt Nanoparticles. Japanese Journal of Applied Physics 48(3), 035504. http://dx.doi.org/10.1143/JJAP.48.035504.CrossRefGoogle Scholar
Dias, A & Andrade, M.S (2000). Atomic force and magnetic force microscopies applied to duplex stainless steels. Applied Surface Science 161(1-2), 109114. http://dx.doi.org/10.1016/S0169-4332(00)00144-6.CrossRefGoogle Scholar
Fischer-Cripps, AC (2011). Nanoindentation: Nanoindentation Testing, pp. 2137. New York, NY: Springer.CrossRefGoogle Scholar
Gilliot, M., En Naciri, A., Johann, L., Stoquert, J. P., Grob, J. J. & Muller, D. (2007). Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry. Physical Review B 76(4). http://dx.doi.org/10.1103/PhysRevB.76.045424.CrossRefGoogle Scholar
Grzelczak, Marek, Vermant, Jan, Furst, Eric M. & Liz-Marzán, Luis M. (2010). Directed Self-Assembly of Nanoparticles. ACS Nano 4(7), 35913605. http://dx.doi.org/10.1021/nn100869j.CrossRefGoogle ScholarPubMed
Gubin, Sergei P, Koksharov, Yurii A, Khomutov, G B & Yurkov, Gleb Yu (2005). Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews 74(6), 489520. http://dx.doi.org/10.1070/RC2005v074n06ABEH000897.CrossRefGoogle Scholar
Hsieh, C.T., Liu, J.Q. & Lue, J.T. (2005). Magnetic force microscopy studies of domain walls in nickel and cobalt films. Applied Surface Science 252(5), 18991909. http://dx.doi.org/10.1016/j.apsusc.2005.05.041.CrossRefGoogle Scholar
Kibombo, Harrison S., Wu, Chia-Ming, Peng, Rui, Baltrusaitis, Jonas & Koodali, Ranjit T. (2013). Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Applied Catalysis B: Environmental 136-137, 248259. http://dx.doi.org/10.1016/j.apcatb.2013.01.062.CrossRefGoogle Scholar
Kim, Duckhoe, Chung, Nak-Kwan, Allen, Stephanie, Tendler, Saul J. B. & Park, Joon Won (2011). Ferritin-Based New Magnetic Force Microscopic Probe Detecting 10 nm Sized Magnetic Nanoparticles. ACS Nano 6(1), 241248. http://dx.doi.org/10.1021/nn203464g.CrossRefGoogle ScholarPubMed
Kim, K. S., Winograd, N. & Davis, R. E. (1971). Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies. Journal of the American Chemical Society 93(23), 62966297. http://dx.doi.org/10.1021/ja00752a065.CrossRefGoogle Scholar
Kunio, Y & Takashi, Y (1992). Effect of temperature on Oswald ripening of silver in glass. J Am Ceram Soc 75, 20712075. doi:10.1111/j.1151-2916.1992.tb04467.xGoogle Scholar
Lee, Jaesang, Mahendra, Shaily & Alvarez, Pedro J. J. (2010). Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano 4(7), 35803590. http://dx.doi.org/10.1021/nn100866w.CrossRefGoogle ScholarPubMed
Lee, Jay, Bagheri, Behrad & Kao, Hung-An (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters 3, 1823. http://dx.doi.org/10.1016/j.mfglet.2014.12.001.CrossRefGoogle Scholar
Li, Xiang, Lu, Wei, Song, Yiming, Wang, Yuxin, Chen, Aiying, Yan, Biao, Yoshimura, Satoru & Saito, Hitoshi (2016). Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Scientific Reports 6(1). http://dx.doi.org/10.1038/srep22467.Google Scholar
Makarov, D., Tibus, S., Rettner, C. T., Thomson, T., Terris, B. D., Schrefl, T. & Albrecht, M. (2008). Magnetic strip patterns induced by focused ion beam irradiation. Journal of Applied Physics 103(6), 063915. http://dx.doi.org/10.1063/1.2894587.CrossRefGoogle Scholar
Malik, A, Hutchison, W, Nishimura, K & Elliman, R (2012). Magnetic properties of Co, Ni, Pt and their alloy nanoparticles formed in SiO2 by ion beam synthesis. Nuclear Instruments and Methods in Physics Research B 272, 7073. doi.org/10.1016/j.nimb.2011.01.035.CrossRefGoogle Scholar
Matteucci, G., Frost, B.G. & Medina, F.F. (2004). Study of the field around magnetic force microscopy probes using electron holography. Ultramicroscopy 99(2-3), 95102. http://dx.doi.org/10.1016/j.ultramic.2003.06.001.CrossRefGoogle ScholarPubMed
Neves, B. R. A. & Andrade, M. S. (1999). Identification of two patterns in magnetic force microscopy of shape memory alloys. Applied Physics Letters 74(14), 20902092. http://dx.doi.org/10.1063/1.123767.CrossRefGoogle Scholar
Oliver, W.C. & Pharr, G.M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19(1), 320. http://dx.doi.org/10.1557/jmr.2004.19.1.3.CrossRefGoogle Scholar
Parkinson, C.R, Walker, M & McConville, C.F (2003). Reaction of atomic oxygen with a Pt() surface: chemical and structural determination using XPS, CAICISS and LEED. Surface Science 545(1-2), 1933. http://dx.doi.org/10.1016/j.susc.2003.08.029.CrossRefGoogle Scholar
Sakamoto, Yasuhiro, Oba, Yojiro, Maki, Hideyuki, Suda, Masayuki, Einaga, Yasuaki, Sato, Tetsuya, Mizumaki, Masaichiro, Kawamura, Naomi & Suzuki, Motohiro (2011). Ferromagnetism of Pt nanoparticles induced by surface chemisorption. Physical Review B 83(10). http://dx.doi.org/10.1103/PhysRevB.83.104420.CrossRefGoogle Scholar
Shimizu, Sunao, Takahashi, Kei S., Hatano, Takafumi, Kawasaki, Masashi, Tokura, Yoshinori & Iwasa, Yoshihiro (2013). Electrically Tunable Anomalous Hall Effect in Pt Thin Films. Physical Review Letters 111(21). http://dx.doi.org/10.1103/PhysRevLett.111.216803.CrossRefGoogle ScholarPubMed
Simonsen, Søren Bredmose, Chorkendorff, Ib, Dahl, Søren, Skoglundh, Magnus, Sehested, Jens & Helveg, Stig (2011). Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. Journal of Catalysis 281(1), 147155. http://dx.doi.org/10.1016/j.jcat.2011.04.011.CrossRefGoogle Scholar
Stepanov, A. L., Golubev, A. N., Nikitin, S. I., Osin, Y. N. (2014). A review on the fabrication and properties of platinum nanoparticles. Rev. Adv. Mater. Sci. 38, 160175. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=99121454&site=ehost-live.Google Scholar
Steyskal, E, Topolovec, S, Stephan Landgra, S, Krenn, H & Würschum, R (2013). In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation. Beilstein J Nanotechnol 4, 394399. doi:10.3762/bjnano.4.46CrossRefGoogle ScholarPubMed
Steyskal, Eva-Maria, Topolovec, Stefan, Landgraf, Stephan, Krenn, Heinz & Würschum, Roland (2013). In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation. Beilstein Journal of Nanotechnology 4, 394399. http://dx.doi.org/10.3762/bjnano.4.46.CrossRefGoogle ScholarPubMed
Taptimthong, Piriya, Düsing, Jan Friedrich, Rissing, Lutz & Wurz, Marc Christopher (2016). Flexible Magnetic Reading/Writing System: Heat-assisted Magnetic Recording. Procedia Technology 26, 7278. http://dx.doi.org/10.1016/j.protcy.2016.08.011.CrossRefGoogle Scholar
Tian, Guo, Zhang, Fengyuan, Yao, Junxiang, Fan, Hua, Li, Peilian, Li, Zhongwen, Song, Xiao, Zhang, Xiaoyan, Qin, Minghui, Zeng, Min, Zhang, Zhang, Yao, Jianjun, Gao, Xingsen & Liu, Junming (2015). Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO 3 /CoFe 2 O 4 /SrRuO 3 Heterostructured Nanodot Array. ACS Nano 10(1), 10251032. http://dx.doi.org/10.1021/acsnano.5b06339.CrossRefGoogle Scholar
Torres-Torres, C., Bornacelli, J., Can-Uc, B., Silva-Pereyra, H. G., Rodríguez-Fernández, L., Avalos-Borja, M., Labrada-Delgado, G. J., Cheang-Wong, J. C., Rangel-Rojo, R. & Oliver, A. (2018). Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates. Journal of the Optical Society of America B 35(6), 1295. http://dx.doi.org/10.1364/JOSAB.35.001295.CrossRefGoogle Scholar
Torres-Torres, D., Torres-Torres, C., Vega-Becerra, O., Cheang-Wong, J.C., Rodríguez-Fernández, L., Crespo-Sosa, A. & Oliver, A. (2015). Structured strengthening by two-wave optical ablation in silica with gold nanoparticles. Optics & Laser Technology 75, 115122. http://dx.doi.org/10.1016/j.optlastec.2015.06.027.CrossRefGoogle Scholar
Torres-Torres, D., Trejo-Valdez, M., Castañeda, L., Torres-Torres, C., Tamayo-Rivera, L., Fernández-Hernández, R. C., Reyes-Esqueda, J. A., Muñoz-Saldaña, J., Rangel-Rojo, R. & Oliver, A. (2010). Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles. Optics Express 18(16), 16406. http://dx.doi.org/10.1364/OE.18.016406.CrossRefGoogle ScholarPubMed
Xiang, Y. & Chen, C.W. (2017). Spatial distribution characteristics of magnetization in exchange-coupled bilayers with mutually orthogonal anisotropies. Journal of Magnetism and Magnetic Materials 430, 15. http://dx.doi.org/10.1016/j.jmmm.2017.01.057.CrossRefGoogle Scholar
Yang, Yong, Sugino, Osamu & Ohno, Takahisa (2012). Possible magnetic behavior in oxygen-deficient β-PtO2. Physical Review B 85(3). http://dx.doi.org/10.1103/PhysRevB.85.035204.CrossRefGoogle Scholar
Yata, Kunio & Yamaguchi, Takashi (1992). Effect of Temperature on Ostwald Ripening of Silver in Glass. Journal of the American Ceramic Society 75(8), 20712075. http://dx.doi.org/10.1111/jace.1992.75.issue-8.CrossRefGoogle Scholar