Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T10:45:56.981Z Has data issue: false hasContentIssue false

Microanalysis of Thermal-Induced Changes at the Resin–Dentin Interface

Published online by Cambridge University Press:  06 June 2014

Manuel Toledano*
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Fátima S. Aguilera
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Estrella Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author. toledano@ugr.es
Get access

Abstract

The purpose of this study was to evaluate the ability of two dentin adhesive systems to induce remineralization in the bonded dentin interface after in vitro thermo-cycling. Dentin surfaces were treated with two different adhesive approaches: (1) 37% phosphoric acid (PA) plus an “etch-and-rinse” dentin adhesive (single bond, SB) (PA+SB) or (2) application of a “self-etch” dentin adhesive (Clearfil SE bond, SEB). Three groups were established: (i) 24 h or (ii) 3 m storage, and (iii) specimens submitted to thermal cycling (100,000 cy/5 and 55ºC). Atomic force microscopy imaging/nanoindentation, Raman spectroscopy/cluster analysis with dye-assisted confocal laser scanning microscopy (CLSM) evaluation and Masson’s trichrome staining assessments were implemented for characterization. Thermo-cycling increased nanohardness in PA+SB at the hybrid layer (HL) and in SEB at the bottom of the HL (BHL). Young’s modulus increased at both the HL and BHL in SEB and at the HL in PA+SB, after thermal stress. Cluster analysis demonstrated an augmentation of the mineral–matrix ratio in thermo-cycled specimens. CLSM showed a decrease of both micropermeability and nanoleakage after thermo-cycling in PA+SB, and were completely absent in SEB. Trichrome staining reflected a scarce demineralized front in PA+SB after thermo-cycling and total remineralization in SEB.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almahdy, A., Downey, F.C., Sauro, S., Cook, R.J., Sherriff, M., Richards, D., Watson, T.F., Banerjee, A. & Festy, F. (2012). Microbiochemical analysis of carious dentin using Raman and fluorescence spectroscopy. Caries Res 46, 432440.Google Scholar
Almushayt, A., Narayanan, K., Zaki, A.E. & George, A. (2006). Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13, 611620.Google Scholar
Balooch, M., Habelitz, S., Kinney, J.H., Marshall, S.J. & Marshall, G.W. (2008). Mechanical properties of mineralized collagen fibrils as influenced by demineralisation. J Struct Biol 162, 404410.Google Scholar
Bass, E.C., Wistrom, E.V., Diederich, C.J., Nau, W.H., Pellegrino, R., Ruberti, J. & Lotz, J.C. (2004). Heat-induced changes in porcine annulus fibrosus biomechanics. J Biomech 37, 233240.Google Scholar
Breschi, L., Cammelli, F., Visintini, E., Mazzoni, A., Vita, F., Carrilho, M., Cadenaro, M., Foulger, S., Mazzoti, G., Tay, F.R., Di Lenarda, R. & Pashley, D. (2009). Influence of chlorhexidine concentration on the durability of etch-and-rinse dentin bonds: A 12-month in vitro study. J Adhes Dent 11, 191198.Google Scholar
Breschi, L., Mazzoni, A., Nato, F., Carrilho, M., Visintini, E., Tjäderhane, L., Ruggeri, A. Jr., Tay, F.R., Dorigo Ede, S. & Pashley, D.H. (2010). Chlorhexidine stabilizes the adhesive interface: A 2-year in vitro study. Dent Mater 26, 320325.Google Scholar
Cetingüç, A., Olmez, S. & Vural, N. (2006). HEMA diffusion from dentin bonding agents through various dentin thicknesses in primary molars. Am J Dent 19, 231235.Google Scholar
Chaussain, C., Eapen, A.S., Huet, E., Floris, C., Ravindran, S., Hao, J., Menashi, S. & George, A. (2009). MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell. Eur Cell Mater 18, 8495.Google Scholar
Cheng, P.T. & Pritzker, K.P. (1983). Pyrophosphate, phosphate ion interaction: Effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. J Rheumatol 10, 769777.Google Scholar
Collins, M.J., Nielsen-Marsh, C.M., Roberts, J.P., Wess, T.J., Csapò, J., Millard, A.R., Turner-Walker, G., Hiller, J., Smith, C.I. & Prigodich, R.V. (2002). The survival of organic matter in bone: A review. Archaeometry 44, 383394.Google Scholar
D’Alpino, P.H., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006). Factors affecting use of fluorescent agents in identification of resin-based polymers. J Adhes Dent 8, 285292.Google Scholar
De Munck, J., Mine, A., Van den Steen, P.E., Van Landuyt, K.L., Poitevin, A., Opdenakker, G. & Van Meerbeek, B. (2010). Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci 118, 494501.CrossRefGoogle ScholarPubMed
Flandin, F., Buffevant, C. & Herbage, D. (1984). A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta 791, 205211.Google Scholar
Gale, M.S. & Darvell, B.W. (1999). Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27, 8999.CrossRefGoogle ScholarPubMed
Greish, Y.E., Bender, J.D., Lakshmi, S., Brown, P.W., Allcock, H.R. & Laurencin, C.T. (2005). Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate) phosphazene composites for biomedical applications. Biomaterials 26, 19.Google Scholar
Greish, Y.E. & Brown, P.W. (2003). Phase evolution during the formation of stoichiometric hydroxyapatite at 37.4 degrees C. J Biomed Mater Res B Appl Biomater 67, 632637.Google Scholar
Griffiths, B.M., Watson, T.F. & Sherriff, M. (1999). The influence of dentine bonding systems and their handling characteristics on themorphology and micropermeability of the adhesive interface. J Dent 27, 6371.Google Scholar
Harokopakis-Hajishengallis, E. (2007). Physiologic root resorption in primary teeth: Molecular and histological events. J Oral Sci 49, 112.CrossRefGoogle ScholarPubMed
Hashimoto, M., Ohno, H., Kaga, M., Sano, H., Endo, K. & Oguchi, H. (2002). Fractured surface characterization: Wet versus dry bonding. Dent Mater 18, 95102.Google Scholar
Hosoya, Y., Ando, S., Yamaguchi, K., Ooka, S., Miyazaki, M. & Tay, F.R. (2010). Quality of the interface of primary tooth dentin bonded with antibacterial fluoride-releasing adhesive. J Dent 38, 423430.Google Scholar
Inoue, S., Koshiro, K., Yoshida, Y., De Munck, J., Nagakane, K., Suzuki, K., Sano, H. & Van Meerbeek, B. (2005). Hydrolytic stability of self-etch adhesives bonded to dentin. J Dent Res 84, 11601164.Google Scholar
International Organization for Standardization (1994). ISO TR11405. Dental Materials-Guidance on Testing of Adhesion to Tooth Structure. Geneva: International Organization for Standardization, pp. 115.Google Scholar
Kidd, E.A., Harrington, E. & Grieve, A.R. (1978). The cavity sealing ability of composite restorations subjected to thermal stress. J Oral Rehabil 5, 279286.Google Scholar
Koibuchi, H., Yasuda, N. & Nakabayashi, N. (2001). Bonding to dentin with a self-etching primer: The effect of smear layers. Dent Mater 17, 122126.Google Scholar
Kronick, P., Maleeff, B. & Carroll, R. (1988). The locations of collagens with different thermal stabilities in fibrils of bovine reticular dermis. Connect Tissue Res 18, 123134.CrossRefGoogle ScholarPubMed
Li, L., Zhu, Y.Q., Jiang, L., Peng, W. & Ritchie, H.H. (2011). Hypoxia promotes mineralization of human dental pulp cells. J Endod 37, 799802.Google Scholar
Li, X., Zhou, M., Wang, X., Li, R., Han, N. & Zhang, Q. (2012). Quantitative determination of high-temperature requirement protein A1 and its possible associated molecules during induced reparative dentin formation. J Endod 38, 814820.Google Scholar
Liu, Y., Mai, S., Li, N., Yiu, C.K., Mao, J., Pashley, D.H. & Tay, F.R. (2011). Differences between top–down and bottom–up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomaterialia 7, 17421751.Google Scholar
Mazzitelli, C., Monticelli, F., Toledano, M., Ferrari, M. & Osorio, R. (2012). Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts. Clin Oral Investig 16, 909915.Google Scholar
Miles, C.A. & Ghelashvili, M. (1999). Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76, 32433252.CrossRefGoogle ScholarPubMed
Nishitani, Y., Yoshiyama, M., Donnelly, A.M., Agee, K.A., Sword, J., Tay, F.R. & Pashley, D.H. (2006). Effects of resin hydrophilicity on dentin bond strength. J Dent Res 85, 10161021.Google Scholar
Nudelman, F., Pieterse, K., George, A., Bomans, P.H., Friedrich, H., Brylka, L.J., Hilbers, P.A., de With, G. & Sommerdijk, N.A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9, 10041009.Google Scholar
Osorio, R., Yamauti, M., Osorio, E., Román, J.S. & Toledano, M. (2011). Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur J Oral Sci 119, 401410.Google Scholar
Osorio, R., Yamauti, M., Ruiz-Requena, M.E. & Toledano, M. (2013). MMPs activity and bond strength in deciduous dentine-resin bonded interfaces. J Dent 41, 549555.Google Scholar
Pakozdi, A., Amin, M.A., Haas, C.S., Martinez, R.J., Haines, G.K. 3rd, Santos, L.L., Morand, E.F., David, J.R. & Koch, A.E. (2006). Macrophage migration inhibitory factor: A mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther 8, R132.Google Scholar
Pashley, D.H., Tay, F.R., Breschi, L., Tjäderhane, L., Carvalho, R.M., Carrilho, M. & Tezvergil-Mutluay, A. (2011). State of the art etch-and-rinse adhesives. Dent Mater 27, 116.Google Scholar
Pashley, D.H., Tay, F.R., Yiu, C., Hashimoto, M., Breschi, L., Carvalho, R.M. & Ito, S. (2004). Collagen degradation by host-derived enzymes during aging. J Dent Res 83, 216221.Google Scholar
Piwowarczyk, A., Bender, R., Ottl, P. & Lauer, H.C. (2007). Long-term bond between dual-polymerizing cementing agents and human hard dental tissue. Dent Mater 23, 211217.Google Scholar
Profeta, A.C., Mannoci, F., Foxton, R.M., Thompson, I., Watson, T.F. & Sauro, S. (2012). Bioactive effects of a calcium/sodium phosphosilicate on the resin-dentine interface: A microtensile bond strength, scanning electron microscopy, and confocal microscopy study. Eur J Oral Sci 120, 353362.Google Scholar
Profeta, A.C., Mannocci, F., Foxton, R., Watson, T.F., Feitosa, V.P., De Carlo, B., Mongiorgi, R., Valdré, G. & Sauro, S. (2013). Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin–dentin interfaces. Dent Mater 29, 729741.Google Scholar
Rodrigues, T.L., Nagatomo, K.J., Foster, B.L., Nociti, F.H. & Somerman, M.J. (2011). Modulation of phosphate/pyrophosphate metabolism to regenerate the periodontium: A novel in vivo approach. J Periodontol 82, 17571766.Google Scholar
Sauro, S., Osorio, R., Watson, T.F. & Toledano, M. (2012). Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentin interface. J Mater Sci Mater Med 23, 15211532.Google Scholar
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L. & Thomopoulos, S. (2012). Mineral distributions at the developing tendon enthesis. PLoS One 7, e48630.Google Scholar
Shono, Y., Terashita, M., Shimada, J., Kozono, Y., Carvalho, R.M., Russell, C.M. & Pashley, D.H. (1999). Durability of resin-dentin bonds. J Adhes Dent 1, 211218.Google Scholar
Tjäderhane, L., Larjava, H., Sorsa, T., Uitto, V.J., Larmas, M. & Salo, T. (1998). The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 77, 16221629.Google Scholar
Toledano, M., Aguilera, F.S., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2013 b). In vitro load-induced dentin collagen-stabilization against MMPs degradation. J Mech Behav Biomed 27, 1018.Google Scholar
Toledano, M., Cabello, I., Cabrerizo-Vílchez, M.A., Fernández, M.A. & Osorio, R. (2014). Surface microanalysis and chemical imaging of early dentin remineralisation. Microsc Microanal 20, 245256.Google Scholar
Toledano, M., Cabello, I., Yamauti, M., Giannini, M., Aguilera, F.S., Osorio, E. & Osorio, R. (2012). Resistance to degradation of resin-dentin bonds produced by one-step self-etch adhesives. Microsc Microanal 18, 14801493.Google Scholar
Toledano, M., Osorio, E., Aguilera, F.S., Cabrerizo-Vílchez, M.A. & Osorio, R. (2012). Surface analysis of conditioned dentin and resin–dentin bond strength. J Adh Sci Technol 26, 2740.Google Scholar
Toledano, M., Osorio, R., Osorio, E., Aguilera, F.S., Yamauti, M., Pashley, D.H. & Tay, F. (2007). Durability of resin-dentin bonds: Effects of direct/indirect exposure and water media. Dent Mater 23, 885892.Google Scholar
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013 a). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.Google Scholar
Trebacz, H. & Wójtowicz, K. (2005). Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol 37, 257262.Google Scholar
Trebacz, H. & Wójtowicz, K. (2008). Thermostability of bone tissue after immobilization induced osteopenia in a rat model. Folia Histochem Cytobiol 46, 379382.CrossRefGoogle ScholarPubMed
Wang, S.Y., Cappellini, E. & Zhang, H.Y. (2012). Why collagens best survived in fossils? Clues from amino acid thermal stability. Biochem Biophys Res Commun 25, 57.CrossRefGoogle Scholar
Wang, Y. & Yao, X. (2010). Morphological/chemical imaging of demineralized dentin layer in its natural state. Dent Mater 26, 433442.Google Scholar
Willet, N., Gohy, J.F., Lei, L., Heinrich, M., Auvray, L., Varshney, S., Jérôme, R. & Leyh, B. (2007). Fast multiresponsive micellar gels from a smart ABC triblock copolymer. Angew Chem Int Ed Engl 46, 79887992.Google Scholar