Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T02:11:37.808Z Has data issue: false hasContentIssue false

Notes on the Newly Identified Asperula cankiriense B. Şahin & Sağıroğlu (Rubiaceae) from Turkey Based on a Light and Scanning Electron Microscopic Study

Published online by Cambridge University Press:  09 February 2022

Ayşenur Kayabaş*
Affiliation:
Faculty of Science, Department of Biology, Çankırı Karatekin University, Çankırı, Turkey
Damla Amutkan Mutlu
Affiliation:
Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
*
*Corresponding author: Ayşenur Kayabaş, E-mail: aysenurkayabas@karatekin.edu.tr
Get access

Abstract

Micromorphological features of vegetative and reproductive organs in plants are considered important because they can be used as taxonomic characters. Asperula cankiriense B. Şahin & Sağıroğlu, commonly known as “Çankırı belumu”, belongs to the family Rubiaceae and generally occurs in gypsum steppes. This research reports for the first time the micromorphological characteristics of the vegetative and reproductive organs of A. cankiriense using light and scanning electron microscopy. Taxonomically critical diagnostic features, such as raphide crystals, presence and shape of trichomes, leaf cross-section shape, flower structure, and epidermal ornamentation, were described in detail. This study provided up-to-date information on the micromorphology of this newly described species and provided additional systematic information on A. cankiriense. New data about the species are reported here and will contribute to the knowledge about the family Rubiaceae.

Type
Micrographia
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrino, CR, Callado, CH, Rabelo, GR, da Silva Neto, SJ, Manão, CYG & Da Cunha, M (2019). Leaf anatomy and micromorphology of six species of Palicourea Aubl. (Rubiaceae) from the Atlantic forest of Brazil. J Torrey Bot 146(3), 182197.CrossRefGoogle Scholar
Al-Taie, TA & Nasrullah, IK (2020). Anatomical study of surface leaf epidermis and indumentum of six species belong to Rubiaceae in Iraq. J Res Lepid 51(2), 238246.CrossRefGoogle Scholar
Arı, N & Kahraman, A (2020). Anatomical and palynological investigations on Rubia tinctorum L. (Rubieae, Rubiaceae) from the Aegean Region of Turkey. Commagene J Biol 4(1), 14.Google Scholar
Ballego-Campos, I, Forzza, RC & Paiva, EA (2020). More than scales: Evidence for the production and exudation of mucilage by the peltate trichomes of Tillandsia cyanea (Bromeliaceae: Tillandsioideae). Plants 9(6), 763.CrossRefGoogle Scholar
Barthlott, W (1981). Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects. Nord J Bot 1(3), 345355.CrossRefGoogle Scholar
Batuyong, MA, Calaramo, MA & Alejandro, GJD (2021). Inventory of Rubiaceae species in Mt. Pao range, Ilocos Norte, Northwestern Luzon, Philippines. Biodivers J Biol Divers 22(8), 36043612.CrossRefGoogle Scholar
Bizimbitkiler.org, (2021). Available at https://bizimbitkiler.org.tr/yeni/demos/technical/. (accessed May 22, 2021).Google Scholar
Bolukbasi, A, Kurt, L & Palacio, S (2016). Unravelling the mechanisms for plant survival on gypsum soils: An analysis of the chemical composition of gypsum plants from Turkey. Plant Biol 18(2), 271279.CrossRefGoogle ScholarPubMed
Boyadgiev, TG & Verheye, WH (1996). Contribution to a utilitarian classification of gypsiferous soil. Geoderma 74(3–4), 321338.CrossRefGoogle Scholar
Bueno, FGB, Kendall, L, de Araujo Alves, D, Tamara, ML, Heard, TA, Latty, T & Gloag, R (2021). Stingless bee floral visitation in the global tropics and subtropics. Biodivers J Biol Divers 22(8), 129.Google Scholar
Campbell, G, Mielke, MS, Rabelo, GR & Da Cunha, M (2018). Key anatomical attributes for occurrence of Psychotria schlechtendaliana (Müll. Arg.) Müll. Arg. (Rubiaceae) in different successional stages of a tropical moist forest. Flora 246, 3341.CrossRefGoogle Scholar
Carlquist, S (1961). Comparative Plant Anatomy. New York: Holt, Rinehart and Winston.Google Scholar
Daşkın, R, Bağçivan, G & Korkmaz, E (2016). Morphological and anatomical chacteristics of Galium mite, G. angustissimum and G. galiopsis (Rubiaceae). Res J Biol Sci 9(2), 5154.Google Scholar
Dickison, WC (1975). The bases of angiosperm phylogeny: Vegetative anatomy. Ann Missouri Bot Gard 62, 590620.CrossRefGoogle Scholar
Finley, DS (1999). Patterns of calcium oxalate crystals in young tropical leaves: A possible role as an anti-herbivory defense. Rev Biol Trop 47(1–2), 2731.Google Scholar
Florentin, MN, Cabaña Fader, A & Gonzalez, AM (2016). Morpho-anatomical and morphometric studies of the floral structures of the distylous Oldenlandia salzmannii (Rubiaceae). Acta Bot Brasilica 30, 585601.CrossRefGoogle Scholar
Fontenelle, GB, Costa, CG & Machado, RD (1994). Foliar anatomy and micromorphology of eleven species of Eugenia L. (Myrtaceae). Bot J Linn Soc 116(2), 111133.CrossRefGoogle Scholar
Ghazalli, MN, Sah, MSM, Mat, M, Awang, K, Jaafar, MA, Mirad, R, Zaini, AZ, Nordin, ARM, Rusli, NM, Mohamad, SS & Dalee, ASM (2021). Leaf anatomy and micromorphology characteristics of ketum [Mitragyna speciosa (Korth.) Havil.] (Rubiaceae). Trop Life Sci Res 32(1), 107.Google Scholar
Gonzalez, AM, Salgado, CR, Fernández, A & Arbo, MM (2012). Anatomy, pollen, and chromosomes of Adenoa (Turneraceae), a monotypic genus endemic to Cuba. Brittonia 64, 208225.CrossRefGoogle Scholar
Gucel, S (2015). Morphology, anatomy and cytology of critically endangered endemic Asperula daphneola from, West Anatolia, Turkey. J Environ Biol 36(1), 129.Google ScholarPubMed
Horner, HT & Wagner, BL (1995). Calcium oxalate formation in higher plants. Calcium Oxalate Biol Syst 1, 5372.Google Scholar
Judkevich, MD, Gonzalez, AM & Salas, RM (2020). A new species of Randia (Rubiaceae) and the taxonomic significance of foliar anatomy in the species of Randia of the Southern Cone of America. Syst Bot 45(3), 607619.CrossRefGoogle Scholar
Judkevich, MD, Salas, RM & Gonzalez, AM (2015). Revisión de Randia (Rubiaceae) en Argentina, taxonomía y morfoanatomía. Bol Soc Argent Bot 50, 607625.CrossRefGoogle Scholar
Judkevich, MD, Salas, RM & Gonzalez, AM (2017). Colleters in american Spermacoceae genera (Rubiaceae): Morphoanatomical and evolutionary aspects. Int J Plant Sci 178(5), 378397.CrossRefGoogle Scholar
Karabourniotis, G, Horner, HT, Bresta, P, Nikolopoulos, D & Liakopoulos, G (2020). New insights into the functions of carbon-calcium inclusions in plants. New Phytol 228(3), 845854.CrossRefGoogle ScholarPubMed
Kayabaş, A (2021). Micromorphological considerations on Alyssum nezaketiae Aytaç & H. Duman (Brassicaceae), endemic to gypsum habitats from Turkey: An electron microscopic study. Microsc Res Tech 84(10), 24622471.CrossRefGoogle Scholar
Kayabaş, A & Kurt, L (2020). Is the substrate an important factor in the investigation of gypsophile endemism? In Paper presented at the 2nd International Symposium on Biodiversity Research, Rize, Turkey. Full text retrieved from http://isbr2020.erdogan.edu.tr/.Google Scholar
Korkmaz, E (2017). Morphological and anatomical investigations on Galium L. (Rubiaceae) taxa distrıbuted in bursa province. Master Thesis. Uludağ University.Google Scholar
Lersten, NR & Horner, HT (2011). Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot 98(1), 111.CrossRefGoogle Scholar
Lima, JF, Leite, KRB, Clark, LG & Oliveira, RP (2021). Notes on leaf micromorphology of the rare herbaceous bamboo Buergersiochloa bambusoides Pilg. (Olyreae, Poaceae) from New Guinea and its taxonomic implications. PhytoKeys 172, 135.CrossRefGoogle ScholarPubMed
Lima, MPDS, Soares, A, Porto, JMP, , FS, Carvalho, MDS & Braga, FT (2020). Leaf anatomy of Rubiaceae species in a semiarid area of Brazil. Rodriguésia 56, 1–11.CrossRefGoogle Scholar
Metcalfe, CR & Chalk, L (1950). Anatomy of Dicotyledons. Leaves, Stem and Wood in Relation to Taxonomy with Notes on Economic Uses. Oxford: Clarendon Press.Google Scholar
Metcalfe, CR & Chalk, L (1979). Anatomy of the Dicotyledons: Systematic Anatomy of the Leaf and Stem. Oxford, UK: Clarendon Press.Google Scholar
Metcalfe, CR & Chalk, L (1985). Anatomy of the Dicotyledons: Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press.Google Scholar
Moraes, RR, Lima, HRP, Alexandrino, CR & Da Cunha, M (2020). Structural and histochemical foliar traits assessing taxonomy of Rubiaceae species occurring in the Brazilian Atlantic Forest. Flora 268, 151625.CrossRefGoogle Scholar
Mownika, S, Ramya, EK & Sharmila, S (2020). Anatomical and histochemical characteristics of Morinda citrifolia L. (Rubiaceae). Int J Pharm Sci Res 11(2), 669677.Google Scholar
Nairn, SP, Robertson, AH, Ünlügenç, UC, Tasli, K & İnan, N (2013). Tectonostratigraphic evolution of the Upper Cretaceous-Cenozoic central Anatolian basins: An integrated study of diachronous ocean basin closure and continental collision. Geol Soc Spec Publ 372(1), 343384.CrossRefGoogle Scholar
Oliveira, CFD, Oliveira, VB, Bobek, VB, Rech, KS, Betim, FCM, Dias, JDFG, Zanin, SMW, Miguel, OG & Miguel, MD (2020). Phytochemical and morpho-anatomical study of the vegetative organs of Psychotria fractistipula L.B.sm., R.M. Klein & Delprete (Rubiaceae). Braz J Pharm Sci 56, 19.CrossRefGoogle Scholar
Öztürk, M, Altay, V, Altundağ, E & Gücel, S (2016). Halophytic plant diversity of unique habitats in Turkey: Salt mine caves of Çankırı and Iğdır. In The Halophytes for Food Security in Dry Lands, Khan, MA, Ozturk, M, Gul, B & Ahmed, MZ (Eds.), pp. 291315. Oxford: Academic Press.CrossRefGoogle Scholar
Paiva, ÉAS (2021). Do calcium oxalate crystals protect against herbivory? Sci Nat 108(3), 17.CrossRefGoogle ScholarPubMed
Pérez, V, Arévalo, A, Villanueva-Almanza, L & Ezcurra, E (2021). Variation in leaf xeromorphism in the desert palm genus Washingtonia (Arecaceae). J Arid Environ 186, 104412.CrossRefGoogle Scholar
Peschiutta, ML, Bucci, SJ, Goldstein, G & Scholz, FG (2020). Leaf herbivory and calcium oxalate crystal production in Prunus avium. Arthropod Plant Interact 14(6), 727732.CrossRefGoogle Scholar
Pohl, RW (1965). Contact dermatitis from the juice of Ornithogalum caudatum. Toxicon 3, 167168.CrossRefGoogle ScholarPubMed
Rauber, CR, Toderke, ML, Zini, ADS, Lima, LCP, Caxambu, MG, Salas, RM, Cabral, EL & Temponi, LG (2021). Synopsis of Rubiaceae from the Iguaçu National Park, Paraná, Brazil. Rodriguésia 72, 125.CrossRefGoogle Scholar
Robbrecht, E (1988). Tropical woody Rubiaceae. Bot Belg 1(272), 599602.Google Scholar
Romero, MF, Salas, RM & Gonzalez, AM (2019). Taxonomic and ecological implications of foliar morphoanatomy in Cephalanthus (Naucleeae, Rubiaceae). Syst Bot 44(2), 378397.CrossRefGoogle Scholar
Romero, MF, Salas, RM & Gonzalez, AM (2021). Floral anatomy, embryology, seed, and fruit development in Cephalanthus (Naucleeae-Rubiaceae), with emphasis on C. glabratus. Protoplasma 125.Google Scholar
Saadi, SMAI & Mondal, AK (2011). Studies on the calcium oxalate crystals (Raphides) and idioblast of some selected members of Araceae in Eastern India. Afr J Plant Sci 6(9), 256269.Google Scholar
Şahin, B, Sağiroğlu, M & Başer, B (2021). A new Asperula L. (Rubiaceae) species from gypsum steppes of Çankırı province in Turkey. Turk J Bot 45(3), 243252.CrossRefGoogle Scholar
Şahin, B & Şimşek, Ö (2016). “Nezaket kevkesi” (Alyssum nezaketiae) Species Action Plan. Ankara: Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Nature Conservation and National Parks.Google Scholar
Shah, SN, Ahmad, M, Zafar, M, Ullah, F, Zaman, W, Mazumdar, J, Khuran, I & Khan, SM (2019). Leaf micromorphological adaptations of resurrection ferns in Northern Pakistan. Flora 255, 110.CrossRefGoogle Scholar
Sönmez, İ (2014). Glauberite-halite association in bozkır formation. Bull Miner Res Explor 149(149), 153175.Google Scholar
Syvertsen, JP, Lloyd, J, McConchie, C, Kriedemann, PE & Farquhar, GD (1995). On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18(2), 149157.CrossRefGoogle Scholar
Teixeira, TR, Pádua, MS & Castro, AHF (2016). Leaf anatomy of Cordiera sessilis (Vell.) Kuntze (Rubiaceae). Acta Sci Biol Sci 38(3), 355364.CrossRefGoogle Scholar
Thomas, V (1991). Structural, functional and phylogenetic aspects of the colleter. Ann Bot 68, 287305.CrossRefGoogle Scholar
Vrijdaghs, A, Smets, E & De Block, P (2020). Different ways to obtain similar results: The development of the corolla and epipetaly in Rubieae (Rubioideae, Rubiaceae). Plant Ecol Evol 153(3), 466486.CrossRefGoogle Scholar
Ward, D & Spiegel, M (1997). Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily. J Chem Ecol 23, 333346.CrossRefGoogle Scholar
Whang, SS, Kim, K & Hill, RS (2004). Cuticle micromorphology of leaves of Pinus (Pinaceae) from North America. Bot J Linn Soc 144(3), 303320.CrossRefGoogle Scholar
Willmer, C & Fricker, M (1996). Stomata, vol. 2. Netherlands: Springer Science & Business Media.CrossRefGoogle Scholar
Xiang, CL, Dong, ZH, Peng, H & Liu, ZW (2010). Trichome micromorphology of the East Asiatic genus Chelonopsis (Lamiaceae) and its systematic implications. Flora Morphol Distrib Funct Ecol Plants 205(7), 434441.CrossRefGoogle Scholar
Zafar, M, Ahmad, M, Shaheen, S, Sultana, S, Rehman, SU & Amina, H (2019). Micromorphological investigation of leaf epidermis and seeds of Vitaceae from Pakistan using light microscopy and scanning electron microscopy. Microsc Res Tech 82(4), 335344.Google Scholar