Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T15:09:32.905Z Has data issue: false hasContentIssue false

Observation of Nanometer-Xe Clusters Embedded in Al Crystals

Published online by Cambridge University Press:  22 January 2004

M. Song
Affiliation:
National Institute for Materials Science, Nanomaterials Laboratory, Sakura 3-13, Tsukuba-shi, Ibaraki 305-0003, Japan
K. Mitsuishi
Affiliation:
National Institute for Materials Science, Nanomaterials Laboratory, Sakura 3-13, Tsukuba-shi, Ibaraki 305-0003, Japan
K. Furuya
Affiliation:
National Institute for Materials Science, Nanomaterials Laboratory, Sakura 3-13, Tsukuba-shi, Ibaraki 305-0003, Japan
Get access

Abstract

The structure of Xe precipitates with sizes in several nanometers embedded in Al is known to be stable and its structure is well confirmed. But knowledge about the structure of Xe precipitates with nanometer sizes is very limited. There are difficulties in observing such small structures embedded in a crystalline matrix. An off-Bragg condition is used to observe diffraction patterns, dark-field, and high-resolution transmission electron microscopy images. The structure of Xe precipitates with sizes of about 2 nm and smaller is observed and confirmed. They are in an fcc structure and their orientation relationship with the Al matrix is similar to that of larger crystalline Xe precipitates or in an undefined structure. The lattice spacing or atomic distance in such nanometer-sized Xe precipitates is smaller than those of larger Xe precipitates embedded in Al matrix. There is a trend that as the size becomes smaller, the precipitates are more likely to have an undefined structure.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, C.W., Birtcher, R.C., Donnelly, S.E., Furuya, K., Ishikawa, N., & Song, M. (1999). Migration and coalescence of Xe nanoprecipitates in Al induced by electron irradiation at 300 K. Appl Phys Lett 74, 26112613.CrossRefGoogle Scholar
Allen, C.W., Birtcher, R.C., Donnelly, S.E., Song, M., Mitsuishi, K., Furuya, K., & Dahmen, U. (2003). Determination of interfacial tensions for Xe nanoprecipitates in Al at 300 K. Phil Mag Lett 83, 5764.CrossRefGoogle Scholar
Birtcher, R.C., Donnelly, S.E., Song, M., Furuya, K., Mitsuishi, K., & Allen, C.W. (1999). Behavior of crystalline Xe nanoprecipitates during coalescence. Phys Rev Lett 83, 16171620.CrossRefGoogle Scholar
Birtcher, R.C. & Jäger, W. (1987). Precipitation and phase stability of solid Kr in cavities after room-temperature implantation of Al. Ultramicroscopy 22, 267280.CrossRefGoogle Scholar
Cox, R.J., Goodhew, P.J., & Evans, J.H. (1987). A study of the solidification of argon bubbles in aluminium. Acta Metall 35, 165178.CrossRefGoogle Scholar
Evans, J.H. & Mazey, D.J. (1985a). Evidence of solid krypton bubbles in copper, nickel and gold at 293 K. J Phys F: Met Phys 15, L16.Google Scholar
Evans, J.H. & Mazey, D.J. (1985b). The formation of solid krypton bubbles in molybdenum. Scripta Metallurgica 19, 621623.Google Scholar
Furuya, K., Ishikawa, N., & Allen, C.W. (1999a). In-situ observation of shape and atomic structure of Xe nanocrystals embedded in aluminium. J Microsc 194, 152160.Google Scholar
Furuya, K., Mitsuishi, K., Ishikawa, N., & Allen, C.W. (2000). Imaging and modeling of nanocrystalline Xe in Al. Mater Sci and Eng A 285, 8590.CrossRefGoogle Scholar
Furuya, K., Mitsuishi, K., Song, M., & Saito T. (1999b). In-situ ion implantation of Xe into Al with high-resolution high-voltage electron microscopy. Proceedings of the 1998 International Conference on Ion Implantation Technology, pp. 811814. Piscataway, NJ: IEEE.
Furuya, K., Mitsuishi, K., Song, M., & Saito, T. (1999c). In-situ, analytical, high-voltage and high-resolution transmission electron microscopy of Xe ion implantation into Al. J Electron Microsc 48, 511518.Google Scholar
Ishikawa, N., Awaji, M., Furuya, K., Birtcher, R.C., & Allen, C.W. (1997). HRTEM analysis of solid precipitates in Xe-implanted aluminum. Nucl Instrum Methods Phys Res B 127/128, 123126.CrossRefGoogle Scholar
Ishikawa, N. & Furuya, K. (1994). Dual ion beam irradiation system interfaced with a transmission electron microscope and the observation of defect evolution in Ni during irradiation. Ultramicroscopy 56, 211215.CrossRefGoogle Scholar
Mitsuishi, K., Song, M., Furuya, K., Birtcher, R.C., Allen, C.W., & Donnelly, S.E. (1997). In-situ observation of atomic processes in Xe nanocrystals embedded in Al. MRS Symp Proc 504, 417422.CrossRefGoogle Scholar
Song, M., Mitsuishi, K., & Furuya, K. (2001). Morphologies of metastable inert gas precipitates in aluminum observed with in-situ HRTEM. Mater Sci Eng A 304–306, 135143.CrossRefGoogle Scholar
Templier, C., Gaboriaud, R.J., & Garem, H. (1985). Precipitation of implanted xenon in aluminium. Mater Sci Eng 69, 6366.CrossRefGoogle Scholar
Templier, C., Garem, H., & Riviere, J.P. (1986a). Transmission electron microscope study of xenon implanted into metal. Phil Mag A 53, 667675.Google Scholar
Templier, C., Garem, H., Riviere, J.P., & Delafond, J. (1986b). Solid and fluid xenon in Xe implanted aluminum. Nucl Instrum Methods B 18, 2433.Google Scholar
Vom Felde, A., Fink, J., Muller-Heinzerling, T.H., Pfluger, J., Scheerer, B., & Linker, H. (1984). Pressure of neon, argon, and xenon bubbles in aluminum. Phys Rev Lett 53, 922925.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., & Littmark, U. (1985). The Stopping and Range of Ions in Solids. New York: Pergaman Press.