Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T15:09:51.725Z Has data issue: false hasContentIssue false

Probing of Individual Semiconductor Nanowhiskers by TEM-STM

Published online by Cambridge University Press:  22 January 2004

Magnus W. Larsson
Affiliation:
Department of Materials Chemistry, The Nanometer Structure Consortium, Lund University, SE-221 00 Lund, Sweden
L. Reine Wallenberg
Affiliation:
Department of Materials Chemistry, The Nanometer Structure Consortium, Lund University, SE-221 00 Lund, Sweden
Ann I. Persson
Affiliation:
Solid State Physics, The Nanometer Structure Consortium, Lund University, SE-221 00 Lund, Sweden
Lars Samuelson
Affiliation:
Solid State Physics, The Nanometer Structure Consortium, Lund University, SE-221 00 Lund, Sweden
Get access

Abstract

Along with rapidly developing nanotechnology, new types of analytical instruments and techniques are needed. Here we report an alternative procedure for electrical measurements on semiconductor nanowhiskers, allowing precise selection and visual control at close to atomic resolution. We use a combination of two powerful microscope techniques, scanning tunneling microscopy (STM) and simultaneous viewing in a transmission electron microscope (TEM). The STM is mounted in the sample holder for the TEM. We describe here a method for creating an ohmic contact between the STM tip and the nanowhisker. We examine three different types of STM tips and present a technique for cleaning the STM tip in situ. Measurements on 1-μm-tall and 40-nm-thick epitaxially grown InAs nanowhiskers show an ohmic contact and a resistance of down to 7 kΩ.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Phys Rev Lett 49, 5761.Google Scholar
Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., & Samuelson, L. (2002a). One-dimensional steeplechase for electrons realized. Nano Lett 2, 8789.Google Scholar
Björk, M.T., Ohlsson, B.J., Thelander, C., Persson, A.I., Deppert, K., Wallenberg, L.R., & Samuelson, L. (2002b). Nanowire resonant tunneling diodes. Appl Phys Lett 81, 44584460.Google Scholar
Duan, X., Huang, Y., Cui, Y., Wang, J., & Lieber, C. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 6669.Google Scholar
Ekvall, I., Wahlström, E., Claesson, D., Olin, H., & Olsson, E. (1999). Preparation and characterization of electrochemically etched W tips for STM. Meas Sci Technol 10, 1118.CrossRefGoogle Scholar
Erts, D., Lohmus, A., Lohmus, R., & Olin, H. (2001). Instrumentation of STM and AFM combined with transmission electron microscope. Appl Phys A Mater Sci Process 72, S71S74.Google Scholar
Guise, O.L., Ahner, J.W., Jung, M.-C., Goughnour, P.C., & Yates, J.T.J. (2002). Reproducible electrochemical etching of tungsten probe tips. Nano Lett 2, 191193.Google Scholar
Isabell, T.C., Fischione, P.F., O'Keefe, K., Guruz, M.U., & Dravid, V.P. (1999). Plasma cleaning and its applications for electron microscopy. Microsc Microanal 5, 126135.Google Scholar
Kizuka, T. (1998). Atomic process of point contact in gold studied by time-resolved high-resolution transmission electron microscopy. Phys Rev Lett 81, 44484451.Google Scholar
Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., & Tanaka, N. (1997). Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys Rev B 55, R7398R7401.Google Scholar
Knapp, H.F. (1998). Electro-chemical etching of Au tips. In Procedures in Scanning Probe Microscopies, Colton, R.J., Engel, A., Frommer, J.E., Gaub, H.E., Gewirth, A.A., Guckenberger, R., Heckl, W., Parkinson, B. & Rabe, A. (Eds.), pp. 6972. Chichester, UK: Wiley.
Libioulle, L., Houbion, Y., & Gilles, J.-M. (1995). Very sharp gold and platinum tips to modify gold surfaces in scanning tunneling microscopy. J Vacuum Sci Technol B: Microelectronics Nano Struct 13, 13251331.Google Scholar
Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O., & Samuelson, L. (1999). Gold nanoparticles: Production, reshaping, and thermal. Charging J Nanoparticle Res 1, 243251.Google Scholar
Shimizu, T., Ando, A., Abe, H., Nakayama, Y., & Tokumoto, H. (2002). Nanometer scale electrical measurement using nanomanipulator: Current–voltage characteristics of carbon nanotube. In Proceedings of nano-7/ecoss-21, Deppert, K. (Ed.). Malmö, Sweden.
Spence, J.C.H. (1988). A scanning tunneling microscope in a side-entry holder for reflection electron-microscopy in the Philips Em400. Ultramicroscopy 25, 165169.Google Scholar
Wagner, R.S. (1970). VLS mechanism of crystal growth. In Whisker Technology, Levitt, A.P. (Eds.), pp. 47119. New York: Wiley.
Wu, Y., Fan, R., & Yang, P. (2002). Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett 2, 8386.Google Scholar