Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T15:03:47.935Z Has data issue: false hasContentIssue false

Simultaneous Observation of Cells and Nuclear Tracks from the Boron Neutron Capture Reaction by UV-C Sensitization of Polycarbonate

Published online by Cambridge University Press:  09 July 2015

Agustina Portu*
Affiliation:
Department of Radiobiology, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina National Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires, Argentina
Andrés Eugenio Rossini
Affiliation:
Nuclear Regulatory Authority (ARN), Libertador 8250, C1429BNP, Ciudad Autónoma de Buenos Aires, Argentina
Silvia Inés Thorp
Affiliation:
Department of Instrumentation and Control, CNEA, Presbítero Juan González Aragón, B1802AYA, Ezeiza, Buenos Aires, Argentina
Paula Curotto
Affiliation:
Department of Research and Production Reactors, CNEA, Presbítero Juan González Aragón, B1802AYA, Ezeiza, Buenos Aires, Argentina
Emiliano César Cayetano Pozzi
Affiliation:
Department of Research and Production Reactors, CNEA, Presbítero Juan González Aragón, B1802AYA, Ezeiza, Buenos Aires, Argentina
Pablo Granell
Affiliation:
Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), Av. Gral. Paz 5445, Ed. 42, B1650JKA, San Martín, Buenos Aires, Argentina
Federico Golmar
Affiliation:
National Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires, Argentina Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), Av. Gral. Paz 5445, Ed. 42, B1650JKA, San Martín, Buenos Aires, Argentina School of Science & Technology, National University of San Martín (UNSAM), Martín de Irigoyen 3100, B1650JKA, San Martín, Buenos Aires, Argentina
Rómulo Luis Cabrini
Affiliation:
Department of Radiobiology, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, C1122AAH, Ciudad Autónoma de Buenos Aires, Argentina Microspectrophotometry Laboratory (LANAIS-MEF), CONICET-CNEA, Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
Gisela Saint Martin
Affiliation:
Department of Radiobiology, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina Institute of Technology “Prof. Jorge Sabato”, UNSAM, Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
*
Get access

Abstract

The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an “imprint” of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm−2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology.

Type
Biological Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, M., Amano, K., Kitamura, K., Tateishi, J. & Hatanaka, H. (1986). Boron distribution analysis by alpha-autoradiography. J Nucl Med 27, 677684.Google Scholar
Amemiya, K., Takahashi, H., Nakazawa, M., Shimizu, H., Majima, T., Nakagawa, Y., Yasuda, N., Yamamoto, M., Kageji, T., Nakaichi, M., Hasegawa, T., Kobayashi, T., Sakurai, Y. & Ogura, K. (2002). Soft X-ray imaging using CR-39 plastics with AFM readout. Nucl Instr Meth B 187, 361366.Google Scholar
Amemiya, K., Takahashi, H., Kajimoto, Y., Nakazawa, M., Yanagie, H., Hisa, T., Eriguchi, M., Nakagawa, Y., Majima, T., Kageji, T., Sakurai, Y., Kobayashi, T., Konishi, T., Hieda, K., Yasuda, N. & Ogura, K. (2005). High-resolution nuclear track mapping in detailed cellular histology using CR-39 with the contact microscopy technique. Radiat Meas 40, 283288.Google Scholar
Amstein, C.F. & Hartman, P.A. (1975). Adaption of plastic surfaces for tissue culture by glow discharge. J Clin Micrbiol 2, 4654.Google Scholar
Andrade, J.D. (1985). Surface and lnterfacial Aspects of Biomedical Polymers. New York, USA: Plenum Press.Google Scholar
Andrady, A.I., Fueki, K. & Torikai, A. (1991). Spectral sensitivity of polycarbonate to light-induced yellowing. J Appl Polym Sci 42, 21052107.Google Scholar
Armijo, J.S. & Rosenbaum, H.S. (1967). Boron detection in metals by alpha-particle tracking. J Appl Phys 38, 20642069.CrossRefGoogle Scholar
Barth, R.F., Vicente, M.G., Harling, O.K., Kiger, W.S. III, Riley, K.J., Binns, P.J., Wagner, F.M., Suzuki, M., Aihara, T., Kato, I. & Kawabata, S. (2012). Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol 7, 146.Google Scholar
Bersina, I.G., Brandt, R., Vater, P., Hinket, K. & Schütze, M. (1995). Fission track autoradiography as a means to investigate plants for their contamination with natural and technogenic uranium. Rad Meas 24, 271282.Google Scholar
Carpano, M., Dagrosa, A., Nievas, S., Rossini, A., Juvenal, G. & Pisarev, M. (2010). Comparative studies of boronophenylalanine (BPA) uptake in three human cell lines of malignant melanoma. In Proceedings of 14th International Congress on Neutron Capture Therapy, Comisión Nacional de Energía Atómica (ed.), pp. 123125. Argentina: Comisión Nacional de Energía Atómica.Google Scholar
Chauhan, P. & Chauhan, R.P. (2014). Variation in alpha radioactivity of plants with the use of different fertilizers and radón measurement in fertilized soil samples. J Environ Health Eng 12, 18.Google Scholar
Coderre, J.A., Turcotte, J.C., Riley, K.J., Binns, P.J., Harling, O.K. & Kiger, W.S. (2003). Boron neutron capture therapy: Cellular targeting of high linear energy transfer radiation. Technol Cancer Res Treat 2, 355375.Google Scholar
Curtis, A.S.G., Forrester, J.V., Mcinnes, C. & Lawrie, F. (1983). Adhesion of cells to polystyrene surfaces. J Cell Biology 97, 15001506.CrossRefGoogle ScholarPubMed
Dey, S., Gupta, D., Maulik, A., Raha, S., Saha, S.K., Syam, D., Pakarinen, J., Voulot, D. & WENANDER, F. (2011). Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays. Astropart Phys 34, 805808.Google Scholar
Diepens, M. & Gijsman, P. (2007). Photodegradation of bisphenol-A polycarbonate. Polym Degrad Stab 92, 397406.Google Scholar
Djeffal, S., Lounis, Z., Allab, M. & Izerrouken, M. (1997). Further investigations on CR-39 fast neutron personal dosemeter. Nucl Instr Meth Phys A 98, 343350.Google Scholar
Durrani, S.A. & Bull, R.K. (1987). Further applications of track detectors and some directions for the future. Solid State Nuclear Track Detection. Principles, Methods an d Applications. International Series in Natural Philosophy, Oxford, UK: Pergamon Press, pp. 250–253.Google Scholar
Fleischer, R.L., Price, P. & Walker, R.M. (1975). Nuclear Tracks in Solids. Berkeley, USA: University of California Press.Google Scholar
Fukuda, H., Hiratsuka, J., Honda, C., Kobayashi, T., Yoshino, K., Karashima, H., Takahashi, J., Abe, Y., Kanda, K., Ichihashi, M. & Mishima, Y. (1994). Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the normal skin. Radiat Res 138, 435442.Google Scholar
Guerra, L., Mordoh, J., Slavutsky, I., Larripa, I. & Medrano, E.E. (1989). Characterization of IIB-MEL-J: A new and highly heterogenous human melanoma cell line. Pigment Cell Res 2, 504509.Google Scholar
Hadad, K., Sarshough, S., Faghihi, R. & Taheri, M. (2013). Application of polystyrene films for indoor radon dosimetry as SSNTD. Appl Radiat Isot 74, 2325.Google Scholar
Kiger, W.S. 3RD, Micca, P.L., Morris, G.M. & Coderre, J.A. (2002). Boron microquantification in oral muscosa and skin following administration of a neutron capture therapy agent. Radiat Prot Dosimetry 99, 409412.Google Scholar
Konishi, T., Amemiya, K., Natsume, T., Takeyasu, A., Yasuda, N., Furusawa, Y. & Hieda, K. (2007). A new method for the simultaneous detection of mammalian cells and ion tracks on a surface of CR 39. J Radiat Res 48, 255261.Google Scholar
Larsson, B., Gabel, D. & Borner, H.G. (1984). Boron-loaded macromolecules in experimental physiology: Tracing by neutron capture radiography. Phys Med Biol 29, 361370.Google Scholar
Miller, M., Quintana, J., Ojeda, J., Langan, S., Thorp, S., Pozzi, E., Sztejnberg, M., Estryk, G., Nosal, R., Saire, E., Agrazar, H. & Graiño, F. (2009). New irradiation facility for biomedical applications at the RA-3 reactor thermal column. Appl Radiat Isot 67, 226229.Google Scholar
Molinari, A.J., Thorp, S.I., Portu, A.M., Saint Martin, G., Pozzi, E.C., Heber, E.M., Bortolussi, S., Itoiz, M.E., Aromando, R.F., Monti Hughes, A., Garabalino, M.A., Altieri, S., Trivillin, V.A. & Schwint, A.E. (2015). Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels. Acta Oncol 54, 99106.Google Scholar
Portu, A., Bernaola, O.A., Nievas, S., Liberman, S. & Saint Martin, G. (2011 a). Measurement of 10B concentration through autoradiography images in polycarbonate nuclear track detectors. Rad Meas 46, 11541159.Google Scholar
Portu, A., Carpano, M., Dagrosa, A., Nievas, S., Pozzi, E., Thorp, S., Cabrini, R., Liberman, S. & Saint Martin, G. (2011 b). Reference systems for the determination of 10B through autoradiography images: Application to a melanoma experimental model. Appl Radiat Isot 69, 16981701.Google Scholar
Portu, A., Carpano, M., Dagrosa, A., Cabrini, R. & Saint Martin, G. (2013). Qualitative autoradiography with polycarbonate foils enables histological and track analyses on the same section. Biotech Histochem 88, 217221.Google Scholar
Portu, A., Rossini, A., Gadan, M.A., Bernaola, O.A., Thorp, S.I., Curotto, P., Pozzi, E.C.C., Cabrini, R.L. & Saint Martin, G. (2014). Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C. RPOR, Ahead of print, http://dx.doi.org/10.1016/j.rpor.2014.10.003.Google Scholar
Rivaton, A. (1995). Recent advances in bisphenol-A polycarbonate photodegradation. Polym Degrad Stab 49, 163179.Google Scholar
Rodrigues, G., Arruda-Neto, J.D.T., Pereira, R.M.R., Kleeb, S.R., Geraldo, L.P., Primi, M.C., Takayama, L., Rodrigues, T.E., Cavalcante, G.T., Genofre, G.C., Semmler, R., Nogueira, G.P. & Fontes, E.M. (2013). Uranium deposition in bones of Wistar rats associated with skeleton development. Appl Radiat Isot 82, 105110.Google Scholar
Rossini, A., Dagrosa, M.A., Portu, A., Saint Martin, G., Thorp, S., Casal, M., Navarro, A., Juvenal, G.J. & Pisarev, M.A. (2015). Assessment of biological effectiveness of boron neutron capture therapy in primary and metastatic melanoma cell lines. Int J Radiat Biol 91, 8189.Google Scholar
Saint Martin, G., Portu, A., Santa Cruz, G.A. & Bernaola, O.A. (2011). Stochastic simulation of track density in nuclear track detectors for 10B measurements in autoradiography. Nucl Instr Meth Phys B 269, 27812785.Google Scholar
Solares, G.R. & Zamenhof, R.G. (1995). A novel approach to the microdosimetry of neutron capture therapy. Part I. High resolution quantitative autoradiography applied to microdosimetry in neutron capture therapy. Radiat Res 144, 5058.Google Scholar
Stegnar, P., Shishkov, I., Burkitbayev, M., Tolongutov, B., Yunusov, M., Radyuk, R. & Salbu, B. (2013). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. J Environ Radiact 123, 313.Google Scholar
Tanaka, H., Sakurai, Y., Suzuki, M., Masunaga, S.I., Takamiya, K., Maruhashi, A. & Ono, K. (2014). Development of a simple and rapid method of precisely identifying the position of 10B atoms in tissue: An improvement in standard alpha autoradiography. J Radiat Res 55, 373380.Google Scholar
Tachikawa, S., Miyoshi, T., Koganei, H., El-Zaria, M.E., Viñas, C., Suzuki, M., Ono, K. & Nakamura, H. (2014). Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chem Commun 50, 1232512328.Google Scholar
Thellier, T., Stelz, T. & Wissocq, J.C. (1976). Detection of stable isotopes of lithium or boron with the help of A (n,alpha) nuclear reaction. Application to the use of 6Li as a tracer for unidirectional flux measurements and to the microlocalization of lithium in animal histologic preparations. Biochim Biophys Acta 43, 604627.Google Scholar
Thellier, M., Dérue, C., Tafforeau, M., Le Sceller, L., Verdus, M.C., Massiot, P. & Ripoll, C. (2001). Physical methods for in vitro analytical imaging in the microscopic range in biology, using radioactive or stable isotopes (review article). J Trace Microprobe T 19, 143162.Google Scholar
Torikai, A., Mitsuoka, T. & Fueki, K. (1993). Wavelength sensitivity of the photoinduced reaction in polycarbonate. J Polym Sci Part A: Polym Chem 31, 27852788.Google Scholar
Verrey, F. (2003). System L: Heteromeric exchangers of large, neutral amino acids involved in directional transport. Eur J Physiol 445, 529533.Google Scholar
Wittig, A., Michel, J., Moss, R.L., Stecher-Rasmussen, F., Arlinghaus, H.F., Bendel, P., Mauri, P.L., Altieri, S., Hilger, R., Salvadori, P.A., Menichetti, L., Zamenhof, R. & Sauerwein, W.A. (2008). Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit Rev Oncol Hematol 68, 6690.Google Scholar
Young, D.A. (1958). Etching of radiation damage in lithium fluoride. Nature 182, 357377.Google Scholar