Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:40:01.019Z Has data issue: false hasContentIssue false

Three-Dimensional Atomically Resolved Analytical Imaging with a Field Ion Microscope

Published online by Cambridge University Press:  06 August 2021

Shyam Katnagallu
Affiliation:
Department of Metal Physics and Alloy Design, Max Planck Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Felipe F. Morgado
Affiliation:
Department of Metal Physics and Alloy Design, Max Planck Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Isabelle Mouton
Affiliation:
Department of Metal Physics and Alloy Design, Max Planck Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Baptiste Gault
Affiliation:
Department of Metal Physics and Alloy Design, Max Planck Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
Leigh T. Stephenson*
Affiliation:
Department of Metal Physics and Alloy Design, Max Planck Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
*
*Corresponding author: Leigh T. Stephenson, E-mail: l.stephenson@mpie.de
Get access

Abstract

Atom probe tomography (APT) helps elucidate the link between the nanoscale chemical variations and physical properties, but it has a limited structural resolution. Field ion microscopy (FIM), a predecessor technique to APT, is capable of attaining atomic resolution along certain sets of crystallographic planes albeit at the expense of elemental identification. We demonstrate how two commercially available atom probe instruments, one with a straight flight path and one fitted with a reflectron lens, can be used to acquire time-of-flight mass spectrometry data concomitant with a FIM experiment. We outline various experimental protocols making the use of temporal and spatial correlations to best discriminate field-evaporated signals from the large field-ionized background signal, demonstrating an unsophisticated yet efficient data mining strategy to provide this discrimination. We discuss the remaining experimental challenges that need to be addressed, notably concerned with accurate detection and identification of individual field-evaporated ions contained within the high field-ionized flux that contributes to a FIM image. Our hybrid experimental approach can, in principle, exhibit true atomic resolution with elemental discrimination capabilities, neither of which atom probe nor FIM can individually fully deliver—thereby making this new approach, here broadly termed analytical field ion microscopy (aFIM), unique.

Type
Field Ion Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: CEA Saclay Des/-Service de Recherches de Métallurgie Appliquée, Gif-sur-Yvette, France

References

Akré, J, Danoix, F, Leitner, H, Auger, P, Akre, J, Danoix, F, Leitner, H & Auger, P (2009). The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109, 518523.CrossRefGoogle Scholar
Bémont, E, Bostel, A, Bouet, M, Da Costa, G, Chambreland, S, Deconihout, B, Hono, K, Bemont, E, Bostel, A, Bouet, M, Da Costa, G, Chambreland, S, Deconihout, B, Hono, K, Bémont, E, Bostel, A, Bouet, M, Da Costa, G, Chambreland, S, Deconihout, B & Hono, K (2003). Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy 95, 231238.CrossRefGoogle ScholarPubMed
Blum, I, Rigutti, L, Vurpillot, F, Vella, A, Gaillard, A & Deconihout, B (2016). Dissociation dynamics of molecular ions in high DC electric field. J Phys Chem A 120, 36543662.CrossRefGoogle ScholarPubMed
Botev, ZI, Grotowski, JF & Kroese, DP (2010). Kernel density estimation via diffusion. Ann Stat 38(5), 29162957.CrossRefGoogle Scholar
Camus, PPP & Melmed, AJJ (1990). Performance of a reflectron energy compensating mirror. Surf Sci Lett 246, 415419.CrossRefGoogle Scholar
Caplins, BW, Blanchard, PT, Chiaramonti, AN, Diercks, DR, Miaja-Avila, L & Sanford, NA (2020). An algorithm for correcting systematic energy deficits in the atom probe mass spectra of insulating samples. Ultramicroscopy 213.CrossRefGoogle ScholarPubMed
Cazottes, S, Vurpillot, F, Fnidiki, A, Lemarchand, D, Baricco, M & Danoix, F (2012). Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy. Microsc Microanal 18, 11291134.CrossRefGoogle Scholar
Cerezo, A, Clifton, PH, Gomberg, A & Smith, GDW (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.CrossRefGoogle ScholarPubMed
Cerezo, A, Godfrey, TJ, Sijbrandij, SJ, Smith, GDW & Warren, PJ (1998). Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum 69, 4958.CrossRefGoogle Scholar
Chen, YC & Seidman, DN (1971). Field ionization characteristics of individal atomic planes. Surf Sci 27, 231255.CrossRefGoogle Scholar
Da Costa, G, Vurpillot, F, Bostel, A, Bouet, M & Deconihout, B (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 13304.CrossRefGoogle Scholar
Da Costa, G, Wang, H, Duguay, S, Bostel, A, Blavette, D, Deconihout, B, Da Costa, G, Wang, H, Duguay, S, Bostel, A, Blavette, D & Deconihout, B (2012). Advance in multi-hit detection and quantization in atom probe tomography. Rev Sci Instrum 83, 123709.CrossRefGoogle ScholarPubMed
Dagan, M, Gault, B, Smith, GDWW, Bagot, PAJJ & Moody, MP (2017). Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc Microanal 23, 255268.CrossRefGoogle ScholarPubMed
Danoix, F, Epicier, T, Vurpillot, F & Blavette, D (2012). Atomic-scale imaging and analysis of single layer GP zones in a model steel. J Mater Sci 47, 15671571.CrossRefGoogle Scholar
De Geuser, F & Gault, B (2017). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 23, 238246.CrossRefGoogle ScholarPubMed
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.CrossRefGoogle Scholar
Drechsler, M & Wolf, D (1958). Zur analyse von Feldionenmikroscop-Aufnahmen mit atomarer Aufl{ö}sung. In 4th International Conference on Electron Microscopy, pp. 835–848. Berlin: Springer.Google Scholar
Hono, K, Ohkubo, T, Chen, YM, Kodzuka, M, Oh-ishi, K, Sepehri-Amin, H, Li, F, Kinno, T, Tomiya, S & Kanitani, Y (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111, 576583.CrossRefGoogle ScholarPubMed
Ingham, MG, Gomer, R, Inghram, MG & Gomer, R (1954). Mass spectrometric analysis of ions from the field microscope. J Chem Phys 22, 12791280.CrossRefGoogle Scholar
Jagutzki, O, Cerezo, A, Czasch, A, Dorner, R, Hattass, M, Huang, M, Mergel, V, Spillmann, U, Ullmann-Pfleger, K, Weber, T, Schmidt-Bocking, H, Smith, GDWW, Dörner, R, Hattaß, M, Huang, M, Mergel, V, Spillmann, U, Ullmann-Pfleger, K, Weber, T, Schmidt-Böcking, H & Smith, GDWW (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.CrossRefGoogle Scholar
Katnagallu, S, Dagan, M, Parviainen, S, Nematollahi, A, Grabowski, B, Bagot, PAJAJPAJ, Rolland, N, Neugebauer, J, Raabe, D, Vurpillot, F, Moody, MPMPP & Gault, B (2018a). Impact of local electrostatic field rearrangement on field ionization. J Phys D: Appl Phys 51, 105601.CrossRefGoogle Scholar
Katnagallu, S, Gault, B, Grabowski, B, Neugebauer, J, Raabe, D & Nematollahi, A (2018b). Advanced data mining in field ion microscopy. Mater Charact 146, 307318.CrossRefGoogle Scholar
Katnagallu, SS, Stephenson, LT, Mouton, I, Freysoldt, C, Subramanyam, APA, Jenke, J, Ladines, ANC, Neumeier, S, Hammerschmidt, T, Drautz, R, Neugebauer, J, Vurpillot, F, Raabe, D & Gault, B (2019). Imaging individual solute atoms at crystalline imperfections in metals. New J Phys 21, 123020.CrossRefGoogle Scholar
Kellogg, GL & Tsong, TT (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.CrossRefGoogle Scholar
Kelly, TF, Gribb, TT, Olson, JD, Martens, RL, Shepard, JD, Wiener, SA, Kunicki, TC, Ulfig, RM, Lenz, DR, Strennen, EM, Oltman, E, Bunton, JH & Strait, DR (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 31101.CrossRefGoogle ScholarPubMed
Kim, Y & Owari, M (2018). Study of the ionization in a field ion microscope using pulsed-laser. e-J Surf Sci Nanotechnol 16, 190192.CrossRefGoogle Scholar
Klaes, B, Lardé, R, Delaroche, F, Parviainen, S, Rolland, N, Katnagallu, S, Gault, B & Vurpillot, F (2021). A model to predict image formation in the three-dimensional field ion microscope. Comput Phys Commun 260, 107317.CrossRefGoogle Scholar
Koelling, S, Richard, O, Bender, H, Uematsu, M, Schulze, A, Zschaetzsch, G, Gilbert, M & Vandervorst, W (2013). Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon. Nano Lett 13, 24582462.CrossRefGoogle ScholarPubMed
Krishnaswamy, SV, Martinka, M & Müller, EW (1977). Multilayer field evaporation patterns. Surf Sci 64, 2342.CrossRefGoogle Scholar
Krishnaswamy, SV, McLane, SB & Müller, EW (1975). Aiming performance of the atom probe. Rev Sci Instrum 46, 12371240.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York, NY: Springer.CrossRefGoogle Scholar
Mclane, SB, Mueller, EW & Panitz, JA (1969). Field adsorption and desorption of helium and neon. Surf Sci 17, 430.Google Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Prakash Kolli, R (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159(Pt 1), 101111.CrossRefGoogle ScholarPubMed
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. Boston, MA: Springer.CrossRefGoogle Scholar
Miller, MK, Kelly, TF, Rajan, K & Ringer, SP (2012). The future of atom probe tomography. Mater. Today 15(4), 158165.CrossRefGoogle Scholar
Müller, E (1971). Investigations of surface processes with the atom-probe field ion microscope. Ber Bunsenges Phys Chem 75, 979987.Google Scholar
Müller, EW & Bahadur, K (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102, 624631.CrossRefGoogle Scholar
Müller, EW, Panitz, JA & McLane, SB (1968). The {atom-probe} field ion microscope. Rev Sci Instrum 39, 8386.CrossRefGoogle Scholar
Müller, M, Saxey, DW, Smith, GDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Panayi, P, Clifton, PH, Lloyd, G, Shellswell, G & Cerezo, A (2006). A wide angle achromatic reflectron for the atom probe. In IVNC and IFES 2006Technical Digestl9th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium, p. 63.Google Scholar
Peng, Z, Vurpillot, F, Choi, P-PP, Li, Y, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.CrossRefGoogle ScholarPubMed
Reinhard, DA, Payne, TR, Strennen, EM, Oltman, E, Geiser, BP, Sobering, GS & Mandt, J (2019). Improved data analysis with IVAS 4 and AP suite. Microsc Microanal 25(S2), 302303.CrossRefGoogle Scholar
Rousseau, L, Normand, A, Morgado, FF, Stephenson, L, Gault, B, Tehrani, K & Vurpillot, F (2020). Dynamic effects in voltage pulsed atom probe. Microsc Microanal 26, 11331146.CrossRefGoogle ScholarPubMed
Rusitzka, KAKK, Stephenson, LT, Szczepaniak, A, Gremer, L, Raabe, D, Willbold, D & Gault, B (2018). A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Sci Rep 8, 110.CrossRefGoogle ScholarPubMed
Sakai, A & Sakurai, T (1984). A numerical analysis of the poschenrieder lens in conjunction with a time-of-flight atom-probe. Jpn J Appl Phys 23, 9396.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479.CrossRefGoogle ScholarPubMed
Sebastian, JT, Hellman, OC & Seidman, DN (2001). New method for the calibration of three-dimensional atom-probe mass spectra. Rev Sci Instrum 72, 29842988.CrossRefGoogle Scholar
Seidman, DN (1978). The study of radiation damage in metals with the field-ion and atom-probe microscopes. Surf Sci 70(1), 532565.CrossRefGoogle Scholar
Seidman, DN (2007). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Silaeva, EP, Arnoldi, L, Karahka, ML, Deconihout, B, Menand, A, Kreuzer, HJ & Vella, A (2014). Do dielectric nanostructures turn metallic in high-electric dc fields? Nano Lett 14, 60666072.CrossRefGoogle ScholarPubMed
Vurpillot, F, Danoix, F, Gilbert, M, Koelling, S, Dagan, M & Seidman, DN (2017). True atomic-scale imaging in three dimensions: A review of the rebirth of field-ion microscopy. Microsc Microanal 23, 210220.CrossRefGoogle ScholarPubMed
Vurpillot, F, Gilbert, M & Deconihout, B (2007). Towards the three-dimensional field ion microscope. Surf Interface Analy 39, 273277.CrossRefGoogle Scholar
Vurpillot, F, Houard, J, Vella, A & Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D: Appl Phys 42, 125502.CrossRefGoogle Scholar
Wang, RLC, Kreuzer, HJ & Forbes, RG (1996). Field adsorption of helium and neon on metals: An integrated theory. Surf Sci 350, 183205.CrossRefGoogle Scholar
Waugh, AR, Boyes, ED & Southon, MJ (1976). Investigations of field evaporation with field desorption microscope. Surf Sci 61, 109142.CrossRefGoogle Scholar
Wille, C, Al-Kassab, T, Heinrich, A & Kirchheim, R (2006). Nanostructured materials studied by means of the computed field ion image tomography (CFIIT). In IVNC and IFES 2006—Technical Digest—l9th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium.CrossRefGoogle Scholar
Yao, L (2016). A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps. MethodsX 3, 268273.CrossRefGoogle ScholarPubMed
Yao, L, Gault, B, Cairney, JMMM & Ringer, SPPP (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90, 121129.CrossRefGoogle Scholar
Zuiderveld, K (1994). Contrast limited adaptive histogram equalization. In Graphics Gems, Zuiderveld, K (Ed.), pp. 474485. Academic Press.CrossRefGoogle Scholar