Article contents
Three-Dimensional Microstructure Reconstruction and Finite Element Simulation of Gas Pores in the High-Pressure Die-Casting AZ91 Mg Alloy
Published online by Cambridge University Press: 11 September 2015
Abstract
High-pressure die-casting (HPDC) AZ91 tensile specimens were used to investigate characteristics of gas pores and their effects on mechanical properties of HPDC AZ91 magnesium (Mg) alloy. Combining the stereoscopic morphology of gas pores obtained from a three-dimensional (3D) reconstruction technique with the experimental data from uniaxial tensile testing, we worked on finite element simulation to find the relationship between gas pores and the mechanical properties of HPDC AZ91 Mg alloy. Results indicate that the 2D metallography images have one-sidedness. Moreover, gas pores >100 µm in the center region have a remarkable negative influence on the ultimate tensile strength (UTS) and elongation. With an increase in the size of large gas pores in the center region, the UTS and elongation of the material decreases. In addition, the distribution of gas pores in the specimens and the areal fraction of gas pores >100 µm on cross sections can also affect the UTS and elongation to some extent.
Keywords
- Type
- Materials Applications and Techniques
- Information
- Copyright
- © Microscopy Society of America 2015
References
- 4
- Cited by