Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T20:54:18.250Z Has data issue: false hasContentIssue false

Advanced Microtexture Study of Anacardium occidentale L. Leaf Surface From the Amazon by Fractal Theory

Published online by Cambridge University Press:  03 August 2020

Glenda Quaresma Ramos
Affiliation:
Postgraduate Program in Tropical Medicine, Fundação de Medicina Tropical, State University of Amazonas, Manaus69040-000, AM, Brazil
Robert Saraiva Matos
Affiliation:
Amazonian Materials Group, Physics Department, Federal University of Amapá-UNIFAP, Macapá, Amapá, Brazil Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe-UFS, São Cristóvão, Sergipe, Brazil
Henrique Duarte da Fonseca Filho*
Affiliation:
Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Federal University of Amazonas-UFAM, Manaus, Amazonas, Brazil
*
*Author for correspondence: Henrique Duarte da Fonseca Filho, E-mail: hdffilho@ufam.edu.br
Get access

Abstract

This work applies stereometric parameters and fractal theory to characterize the structural complexity of the 3D surface roughness of Anacardium occidentale L. leaf using atomic force microscopy (AFM) measurements. Surface roughness was studied by AFM in tapping mode, in air, on square areas of 6,400 and 10,000 μm2. The stereometric analyses using MountainsMap Premium and WSXM software provided detailed information on the 3D surface topography of the samples. These data showed that the morphology of the abaxial and adaxial side of the cashew leaf is different, which was also observed in relation to their microtextures. Fractal analysis showed that the adaxial and abaxial sides have strong microtexture homogeneity, but the adaxial side presented higher surface entropy. These results show that image processing associated with fractal theory can be an indispensable tool for identifying plant species by their leaves because this species has singularities on each side of the leaf.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Afas, N, Marron, N & Ceulemans, R (2006). Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. Environ Exp Bot 58, 279286.CrossRefGoogle Scholar
Almeida, PA, Pinto, EP, Filho, HDF & Matos, RS (2019). Distribution of microorganisms on surface of kefir biofilms associated with Açaí extract distribution of microorganisms on surface of kefir biofilms associated with Açaí extract. Sci Amazonia 8, C10C18.Google Scholar
Ansari, F, Granda, LA, Joffe, R, Berglund, LA & Vilaseca, F (2017). Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos Part A Appl Sci Manuf 96, 147154.CrossRefGoogle Scholar
Arman, A, Ţălu, Ş, Luna, C, Ahmadpourian, A, Naseri, M & Molamohammadi, M (2015). Micromorphology characterization of copper thin films by AFM and fractal analysis. J Mater Sci: Mater Electron 26, 96309639.Google Scholar
Astinchap, B (2019). Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: The effects of deposition time. Optik 178, 231242.CrossRefGoogle Scholar
Backes, AR & Bruno, OM (2009). Plant Leaf Identification Using Multi-scale Fractal Dimension., pp. 143–150. Available at http://link.springer.com/10.1007/978-3-642-04146-4_17.Google Scholar
Backes, AR, Casanova, D & Bruno, OM (2009). Plant leaf identification based on volumetric fractal dimension. Int J Pattern Recogn Artif Intell 23, 11451160.CrossRefGoogle Scholar
Baptista, A, Gonçalves, RV, Bressan, J & Pelúzio, MdCG (2018). Antioxidant and antimicrobial activities of crude extracts and fractions of cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and Pequi (Caryocar brasiliense C.): A systematic review. Oxid Med Cell Longev 2018, 113.CrossRefGoogle Scholar
Bayirli, M, Selvi, S & Cakilcioglu, U (2015). Determining different plant leaves’ fractal dimensions: A new approach to taxonomical study of plants. Bangladesh J Bot 43, 267275.CrossRefGoogle Scholar
Bezerra, MA, de Lacerda, CF, Gomes Filho, E, de Abreu, CEB & Prisco, JT (2007). Physiology of cashew plants grown under adverse conditions. Braz J Plant Physiol 19, 449461.CrossRefGoogle Scholar
Boudon, F, Godin, C, Pradal, C, Puech, O & Sinoquet, H (2006). Estimating the fractal dimension of plants using the two-surface method: An analysis based on 3D-digitized tree foliage. Fractals 14, 149163.CrossRefGoogle Scholar
Boulton, CA, Good, P & Lenton, TM (2013). Early warning signals of simulated Amazon rainforest dieback. Theor Ecol 6, 373384.CrossRefGoogle Scholar
Bruno, OM, de Oliveira Plotze, R, Falvo, M & de Castro, M (2008). Fractal dimension applied to plant identification. Inf Sci 178, 27222733.CrossRefGoogle Scholar
Bucur, V (1988). Wood structural anisotropy estimated by acoustic invariants. IAWA J 9, 6774.CrossRefGoogle Scholar
Carpenter, KJ (2005). Stomatal architecture and evolution in basal angiosperms. Am J Bot 92, 15951615.CrossRefGoogle ScholarPubMed
Chen, YQ & Bi, G (1999). On texture classification using fractal dimension. Int J Pattern Recogn Artif Intell 13, 929943.CrossRefGoogle Scholar
Clarke, KC & Schweizer, DM (1991). Measuring the fractal dimension of natural surfaces using a robust fractal estimator. Cartogr Geogr Inf Sys 18, 3747.Google Scholar
da Silva, NR, Florindo, JB, Gómez, MC, Rossatto, DR, Kolb, RM & Bruno, OM (2015). Plant identification based on leaf midrib cross-section images using fractal descriptors. PLoS One 10, e0130014.CrossRefGoogle ScholarPubMed
de Lucena, LRR & Cunha Filho, M (2019). Lacunarity as index of evaluation of wind direction in pernambuco. Rev Bras Biom 37, 95.CrossRefGoogle Scholar
Dorr, GJ, Kempthorne, DM, Mayo, LC, Forster, WA, Zabkiewicz, JA, McCue, SW, Belward, JA, Turner, IW & Hanan, J (2014). Towards a model of spray–canopy interactions: Interception, shatter, bounce and retention of droplets on horizontal leaves. Ecol Modell 290, 94101.CrossRefGoogle Scholar
Elenkova, D, Zaharieva, J, Getsova, M, Manolov, I, Milanova, M, Stach, S & Ţălu, Ş (2015). Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a biscoumarin derivative. Int J Polym Anal Charact 20, 4256.CrossRefGoogle Scholar
Ferraro, MAN, Pinto, EP & Matos, RS (2020). Study of the superficial distribution of microorganisms in kefir biofilms prepared with Cupuaçu juice. J Bioenergy Food Sci 07, 111.CrossRefGoogle Scholar
Franks, PJ & Farquhar, GD (2007). The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143, 7887.CrossRefGoogle ScholarPubMed
Gonçalves, ECM, Ferreira, NS & Matos, RS (2017). Estudo Cristalográfico de Biofilmes de Kefir. In Blucher Material Science Proceedings, pp. 14–17. São Paulo: Editora Blucher. Available at http://www.proceedings.blucher.com.br/article-details/27707.Google Scholar
Gonçalves, ECM, Pinto, EP, Ferreira, N, Sergipe, UFDe & Matos, RS (2019). Fractal study of kefir biofilms. September.Google Scholar
Gong, Y, Misture, ST, Gao, P & Mellott, NP (2016). Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length. J Phys Chem C 120, 2235822364.CrossRefGoogle Scholar
Heitor, R, De Melo, C, De Melo, RHC & Conci, A (2008). Succolarity: Defining a Method to Calculate This Fractal Measure. Available at https://www.researchgate.net/publication/4364298 (accessed April 24, 2020).Google Scholar
Horcas, I, Fernández, R, Gómez-Rodríguez, JM, Colchero, J, Gómez-Herrero, J & Baro, AM (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78, 013705.CrossRefGoogle Scholar
Ifesan, B (2013). Antioxidant and antimicrobial properties of selected plant leaves. Eur J Med Plants 3, 465473.CrossRefGoogle Scholar
Irion, G (1978). Soil infertility in the Amazonian rain forest. Naturwissenschaften 65, 515519.CrossRefGoogle Scholar
Jaiswal, Y, Naik, V, Tatke, P, Gabhe, S & Vaidya, A (2012). Pharmacognostic and preliminary phytochemical investigations on Pterospermum acerifolium wood. Int J Pharma Bio Sci 3, 356362.Google Scholar
Jeffree, CE (2006). The fine structure of the plant cuticle. In Biology of the Plant Cuticle, pp. 11125. Oxford, UK: Blackwell Publishing Ltd. Available at http://doi.wiley.com/10.1002/9780470988718.ch2.CrossRefGoogle Scholar
Jing, C & Tang, W (2016). Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis. Appl Surf Sci 364, 843849.CrossRefGoogle Scholar
Jobin, A, Nair, MS & Tatavarti, R (2012). Plant identification based on fractal refinement technique (FRT). Procedia Technol 6, 171179.CrossRefGoogle Scholar
Jovani, R, Pérez-Rodríguez, L & Mougeot, F (2013). Fractal geometry for animal biometrics: A response to Kühl and Burghardt. Trends Ecol Evol 28, 499500.CrossRefGoogle ScholarPubMed
Koren, I, Kaufman, YJ, Washington, R, Todd, MC, Rudich, Y, Martins, JV & Rosenfeld, D (2006). The Bodélé depression: A single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1, 014005.CrossRefGoogle Scholar
Lucena, LRR & Stosic, T (2014). Utilização de lacunaridade para detecção de padrões de imagens de retinas humanas. Revista da Estatística da Universidade Federal de Ouro Preto 3, 789793.Google Scholar
Mabberley, DJ (1997). The Plant-Book: A Portable Dictionary of the Vascular Plants. Cambridge, London, UK: Cambridge University Press.Google Scholar
Mandelbrot, BB & Wheeler, JA (1983). The fractal geometry of nature. Am J Phys 51, 286287.CrossRefGoogle Scholar
Matos, RS, Lopes, GAC, Ferreira, NS, Pinto, EP, Carvalho, JCT, Figueiredo, SS, Oliveira, AF & Zamora, RRM (2018). Superficial characterization of kefir biofilms associated with Açaí and Cupuaçu extracts. Arabian J Sci Eng 43, 33713379.CrossRefGoogle Scholar
Matos, TJR, Ramos, GQ, Matos, RS & Filho, HDdF (2019). Medição da Área Foliar de Anacardium Occidentale L. baseada em Processamento Digital de Imagens. Sci Amazonia 8, C11C15.Google Scholar
Meckel, T, Gall, L, Semrau, S, Homann, U & Thiel, G (2007). Guard cells elongate: Relationship of volume and surface area during stomatal movement. Biophys J 92, 10721080.CrossRefGoogle ScholarPubMed
Méndez, A, Reyes, Y, Trejo, G, StĘpień, K & Ţălu, Ş (2015). Micromorphological characterization of zinc/silver particle composite coatings. Microsc Res Technol 78, 10821089.CrossRefGoogle ScholarPubMed
Metcalfe, CR & Chalk, L (1979). Anatomy of the Dicotyledons: Vol I. Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. Oxford: Clarendon Press. Available at https://www.cabdirect.org/cabdirect/abstract/19800664146.Google Scholar
Nečas, D & Klapetek, P (2012). Gwyddion: An open-source software for SPM data analysis. Cent Eur J Phys 10, 181188.Google Scholar
Nithiyanandhan, K & Mathpati, S (2016). Analysis of fractal dimension of medicinal leaves by using techniques of image processing. Int Res J Eng Technol 3, 15311535.Google Scholar
Nosonovsky, M (1970). Entropy in tribology: In the search for applications. Entropy 12, 13451390.CrossRefGoogle Scholar
Plotze, RdO, Falvo, M, Pádua, JG, Bernacci, LC, Vieira, MLC, Oliveira, GCX & Bruno, OM (2005). Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: A study with Passiflora (Passifloraceae). Can J Bot 83, 287301.CrossRefGoogle Scholar
Ramos, GQ, Cotta, EA & da Fonseca Filho, HD (2016). Studies on the ultrastructure in Anacardium occidentale L. leaves from Amazon in northern Brazil by scanning microscopy. Scanning 38, 329335.CrossRefGoogle ScholarPubMed
Salcedo, MOC, Zamora, RRM & Carvalho, JCT (2016). Study fractal leaf surface of the plant species Copaifera sp. using the Microscope Atomic Force—AFM. Available at: www.tropicos.org (accessed April 24, 2020).Google Scholar
Shakoury, R, Rezaee, S, Mwema, F, Luna, C, Ghosh, K, Jurečka, S, Ţălu, Ş, Arman, A & Grayeli Korpi, A (2020). Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Opt Quantum Electron 52, 113.CrossRefGoogle Scholar
Sobola, D, Talu, S, Sadovsky, P, Papez, N & Grmela, L (2017). Application of AFM measurement and fractal analysis to study the surface of natural optical structures. Adv Electr Electron Eng 15, 569576.Google Scholar
Stach, S, Dallaeva, D, Ţălu, Ş, Kaspar, P, Tománek, P, Giovanzana, S & Grmela, L (2015). Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater Sci-Poland 33, 175184.CrossRefGoogle Scholar
Stach, S, Sapota, W, Ţălu, Ş, Ahmadpourian, A, Luna, C, Ghobadi, N, Arman, A & Ganji, M (2017). 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci: Mater Electron 28, 21132122.Google Scholar
Ţălu, Ş, Abdolghaderi, S, Pinto, EP, Matos, RS & Salerno, M (2020). Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surface Eng. 36 (7), 713719.CrossRefGoogle Scholar
Ţălu, Ş, Bramowicz, M, Kulesza, S, Dalouji, V, Solaymani, S & Valedbagi, S (2016 a). Fractal features of carbon–nickel composite thin films. Microsc Res Technol 79, 12081213.CrossRefGoogle ScholarPubMed
Ţălu, Ş, Bramowicz, M, Kulesza, S & Solaymani, S (2018). Topographic characterization of thin film field-effect transistors of 2,6-diphenyl anthracene (DPA) by fractal and AFM analysis. Mater Sci Semicond Process 79, 144152.CrossRefGoogle Scholar
Ţălu, Ş, Luna, C, Ahmadpourian, A, Achour, A, Arman, A, Naderi, S, Ghobadi, N, Stach, S & Safibonab, B (2016 b). Micromorphology and fractal analysis of nickel–carbon composite thin films. J Mater Sci: Mater Electron 27, 1142511431.Google Scholar
Ţălu, Ş, Stach, S & Abdolghaderi, S (2019). The effects of deposition time on the nanoscale patterns of Ag/DLC nanocomposite synthesized by RF-PECVD. Microsc Res Technol 82, 572579.CrossRefGoogle ScholarPubMed
Ţălu, Ş, Stach, S, Sueiras, V & Ziebarth, NM (2015 a). Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea. Ann Biomed Eng 43, 906916.CrossRefGoogle ScholarPubMed
Ţălu, Ş, Stach, S & Trejo, G (2014). Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings structural, electrical and optical properties of transparent WO3 thin films view project ophthalmology view project. J Electrochem Soc. Available at https://www.researchgate.net/publication/258433987 (accessed April 24, 2020).CrossRefGoogle Scholar
Ţălu, Ş, Stach, S, Valedbagi, S, Bavadi, R, Elahi, SM & Ţălu, M (2015 b). Multifractal characteristics of titanium nitride thin films. Mater Sci-Poland 33, 541548.CrossRefGoogle Scholar
Ţəlu, Ş, Patra, N & Salerno, M (2015). Micromorphological characterization of polymer-oxide nanocomposite thin films by atomic force microscopy and fractal geometry analysis. In Progress in Organic Coatings vol. 89, pp. 5056. Amsterdam, Netherlands: Elsevier.Google Scholar
Wang, H, Shi, H, Li, Y & Wang, Y (2014). The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion. PLoS One 9(9), e107062.CrossRefGoogle ScholarPubMed
Woodward, FI & Kelly, CK (1995). The influence of CO2 concentration on stomatal density. New Phytologist 131, 311327.CrossRefGoogle Scholar
Yadav, RP, Kumar, T, Baranwal, V, Vandana, K, Kumar, M, Priya, M, Pandey, SN & Mittal, AK (2017). Fractal characterization and wettability of ion treated silicon surfaces. J Appl Phys 121, 055301.CrossRefGoogle Scholar
Zamani, A, Attar, F & Civeyrel, L (2017). Leaf epidermis characters of Iranian Pyrus L. (Rosaceae) and their taxonomic implications. Genetic Resour Crop Evol 64, 159176.CrossRefGoogle Scholar
Zaneta, G., Sebastian, S., Ştefan, T., Dinara, S. & Zygmunt, W. (2017). Stereometric parameters of butterfly wings. J Biomim, Biomater Biomed Eng 31, 110.Google Scholar