Published online by Cambridge University Press: 26 June 2013
Transmission electron microscopy (TEM) and focused ion beam (FIB) are proven tools to produce site-specific samples in which to study devices from initial processing to causes for failure, as well as investigating the quality, defects, interface layers, etc. However, the use of polymer substrates presents new challenges, in the preparation of suitable site-specific TEM samples, which include sample warping, heating, charging, and melting. In addition to current options that address some of these problems such as cryo FIB, we add an alternative method and FIB sample geometry that address these challenges and produce viable samples suitable for TEM elemental analysis. The key feature to this approach is a larger than usual lift-out block into which small viewing windows are thinned. Significant largely unthinned regions of the block are left between and at the base of the thinned windows. These large unthinned regions supply structural support and thermal reservoirs during the thinning process. As proof-of-concept of this sample preparation method, we also present TEM elemental analysis of various thin metallic films deposited on patterned polycarbonate, lacquer, and poly-di-methyl-siloxane substrates where the pattern (from low- to high-aspect ratio) is preserved.