Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:57:46.444Z Has data issue: false hasContentIssue false

An Atom Probe with Ultra-Low Hydrogen Background

Published online by Cambridge University Press:  20 December 2021

Peter Felfer*
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Benedict Ott
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Mehrpad Monajem
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Valentin Dalbauer
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Martina Heller
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Jan Josten
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
Chandra Macaulay
Affiliation:
Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
*
*Corresponding author: Peter Felfer, E-mail: peter.felfer@fau.de
Get access

Abstract

Atom probe tomography (APT) is a single-ion sensitive time-of-flight mass spectrometry method with near-atomic spatial resolution. In principle, it can be used to detect any chemical element, but so far hydrogen in the form of protium (1H) had to be largely excluded. This is owing to the residual H emitted from the stainless-steel chambers and in-vacuum parts commonly used in atom probe instrumentation. This residual H is then picked up in the APT experiment. In this paper, we show that by replacing the stainless-steel chamber and in-vacuum parts with titanium parts, this residual H can largely be removed, thus enabling the direct imaging of H using APT. We show that besides the drastic reduction of H, also other contaminants such as O, OH, and H2O are reduced by employing this instrument. In the current set-up, the instrument is equipped with high-voltage pulsing limiting the application to conductive materials.

Type
Detection of Hydrogen
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacher, JP, Benvenuti, C, Chiggiato, P, Reinert, MP, Sgobba, S & Brass, AM (2002). Thermal desorption study of selected austenitic stainless steels. J Vac Sci Technol A 21, 167174. doi:10.1116/1.1527953CrossRefGoogle Scholar
Barofsky, DF & Müller, EW (1968). Mass spectrometric analysis of low temperature field evaporation. Surf Sci 10, 177196. doi:10.1016/0039-6028(68)90018-6CrossRefGoogle Scholar
Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom-probe data. Appl Surf Sci 87–8, 298304.CrossRefGoogle Scholar
Blavette, D, Bostel, A, Sarrau, JM, Deconihout, B & Menand, A (1993). An atom-probe for 3-dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Calcatelli, A (2013). The development of vacuum measurements down to extremely high vacuum—XHV. Measurement 46, 10291039.CrossRefGoogle Scholar
Chen, YS, Haley, D, Gerstl, SSA, London, AJ, Sweeney, F, Wepf, RA, Rainforth, WM, Bagot, PAJ & Moody, MP (2017). Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 1196.CrossRefGoogle Scholar
Dylla, HF, Manos, DM & LaMarche, PH (1993). Correlation of outgassing of stainless steel and aluminum with various surface treatments. J Vac Sci Technol A 11, 26232636.CrossRefGoogle Scholar
Eichenauer, W, Hattenbach, K & Pebler, A (1961). Die Löslichkeit von Wasserstoff in festem und flüssigem Aluminium. Int J Mater Res 52, 682684. doi:10.1515/ijmr-1961-521014CrossRefGoogle Scholar
Fedchak, JA, Scherschligt, JK, Avdiaj, S, Barker, DS, Eckel, SP, Bowers, B, O'Connell, S & Henderson, P (2021). Outgassing rate comparison of seven geometrically similar vacuum chambers of different materials and heat treatments. J Vac Sci Technol B 39, 24201. doi:10.1116/6.0000657CrossRefGoogle Scholar
Fremerey, JK (1999). Residual gas: Traditional understanding and new experimental results. Vacuum 53, 197201.CrossRefGoogle Scholar
Gault, B, Haley, D, de Geuser, F, Moody, MP, Marquis, EA, Larson, DJ & Geiser, BP (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.CrossRefGoogle ScholarPubMed
Gault, B, Moody, MP, Cairney, J & Ringer, S (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gault, B, Moody, MP, de Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95, 034103.CrossRefGoogle Scholar
Gault, B, Vurpillot, F, Vella, A, Gilbert, M, Menand, A, Blavette, D & Deconihout, B (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 43705. doi:10.1063/1.2194089CrossRefGoogle Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2011). Analysis of deuterium in V–Fe5 at% film by atom probe tomography (APT). J Alloys Compd 509, S872S876. doi:10.1016/j.jallcom.2010.11.122.CrossRefGoogle Scholar
Gupta, MK, Priyadarshi, A & Khan, Z (2015). Hydrogen in stainless steel as killing agent for UHV: A review. Mater Today Proceed 2, 1074-1081.Google Scholar
Hellsing, M & Hellsing, B (1986). Field adsorption and desorption of hydrogen on W(110): An atom-probe study. Surf Sci 176, 249260. doi:10.1016/0039-6028(86)90174-3.CrossRefGoogle Scholar
Hu, W, Wang, H, Luo, M, Jiang, D & Ouyang, C (2020). Hydrogen solution in tungsten (W) under different temperatures and strains: A first principles calculation study. Phys Chem Chem Phys 22, 1962319630. doi:10.1039/D0CP02878ACrossRefGoogle ScholarPubMed
Ishikawa, Y & Nemanič, V (2003). An overview of methods to suppress hydrogen outgassing rate from austenitic stainless steel with reference to UHV and EXV. Vacuum 69, 501512.CrossRefGoogle Scholar
Ishimaru, H (1989). Ultimate pressure of the order of 10−13 torr in an aluminum alloy vacuum chamber. J Vac Sci Technol A 7, 24392442.CrossRefGoogle Scholar
Ishizawa, K, Kurisu, H, Yamamoto, S, Matsuura, M, Nomura, T, Murashige, N, Morimoto, T & Hesaka, M (2006). Titanium materials for UHV/XHV systems. In 2006 International Symposium on Discharges and Electrical Insulation in Vacuum, vol. 2, pp. 805–808.CrossRefGoogle Scholar
Jousten, K (1998). Dependence of the outgassing rate of a “vacuum fired” 316LN stainless steel chamber on bake-out temperature. Vacuum 49, 359360.CrossRefGoogle Scholar
Kellogg, G (1983). Field evaporation of silicon and field desorption of hydrogen from silicon surfaces. Phys Rev B 28, 1957.CrossRefGoogle Scholar
Kellogg, GL (1981). Pulsed laser stimulated field desorption of hydrogen from molybdenum. J Chem Phys 74, 14791487. doi:10.1063/1.441162CrossRefGoogle Scholar
Kunimune, Y, Shimada, Y, Sakurai, Y, Inoue, M, Nishida, A, Han, B, Tu, Y, Takamizawa, H, Shimizu, Y, Inoue, K, Yano, F, Nagai, Y, Katayama, T & Ide, T (2016). Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography. AIP Adv 6, 45121. doi:10.1063/1.4948558CrossRefGoogle Scholar
Macrander, AT & Seidman, DN (1984). Hydrogen adsorption on (110) tungsten at 30 k: An atom-probe field-ion microscope study. Surf Sci 147, 451465. doi:10.1016/0039-6028(84)90466-7CrossRefGoogle Scholar
Moore, B (2001). Thin-walled vacuum chambers of austenitic stainless steel. J Vac Sci Technol A 19, 228231.CrossRefGoogle Scholar
Moore, BC (1995). Recombination limited outgassing of stainless steel. J Vac Sci Technol A 13, 545548.CrossRefGoogle Scholar
Müller, EW (1971). The atom-probe FIM. Adv Mass Spectrom 5, 979987.Google Scholar
Müller, EW, Panitz, JA & McLane, SB (1968). The atom-probe field Ion microscope. Rev Sci Instrum 39, 8386. doi:10.1063/1.1683116CrossRefGoogle Scholar
Nemanič, V (2019). Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nucl Mater Energy 19, 451457.CrossRefGoogle Scholar
Raiteri, G & Calcatelli, A (2001). Thermal desorption from stainless steel samples coated with TiN and oxide layers. Vacuum 62, 714.CrossRefGoogle Scholar
Redhead, PA (2003). Hydrogen in vacuum systems: An overview. AIP Conf Proc 671, 243254.CrossRefGoogle Scholar
Sakurai, T, Tsong, TT & Müller, EW (1974). Mechanism of hydrogen promotion of field ionization and a new atom-probe field-ion-microscope experiment. Phys Rev B 10, 42054208. doi:10.1103/PhysRevB.10.4205CrossRefGoogle Scholar
Sepehri-Amin, H, Ohkubo, T, Nishiuchi, T, Hirosawa, S & Hono, K (2011). Quantitative laser atom probe analyses of hydrogenation-disproportionated Nd–Fe–B powders. Ultramicroscopy 111, 615618.CrossRefGoogle ScholarPubMed
Shimizu, Y, Sai, H, Matsui, T, Taki, K, Hashiguchi, T, Katayama, H, Matsumoto, M, Terakawa, A, Inoue, K & Nagai, Y (2021). Crystallite distribution analysis based on hydrogen content in thin-film nanocrystalline silicon solar cells by atom probe tomography. Appl Phys Express 14, 016501. doi:10.35848/1882-0786/abd13fCrossRefGoogle Scholar
Stafford, SW & McLellan, RB (1974). The solubility of hydrogen in nickel and cobalt. Acta Metall 22, 14631468.CrossRefGoogle Scholar
Sundell, G, Thuvander, M & Andrén, H-O (2013). Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy 132, 285289.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K, Kobayashi, Y & Tarui, T (2010). The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 63, 261264. doi:10.1016/j.scriptamat.2010.03.012CrossRefGoogle Scholar
Takeda, M, Kurisu, H, Yamamoto, S, Nakagawa, H & Ishizawa, K (2011). Hydrogen outgassing mechanism in titanium materials. Appl Surf Sci 258, 14051411. doi:10.1016/j.apsusc.2011.09.092CrossRefGoogle Scholar
Tsong, TT (1978). Measurement of the field evaporation rate of several transition metals. J Phys F Met Phys 8, 1349. doi:10.1088/0305-4608/8/7/008CrossRefGoogle Scholar
Tsong, TT, Kinkus, TJ & Ai, CF (1983). Field induced and surface catalyzed formation of novel ions: A pulsed-laser time-of-flight atom-probe study. J Chem Phys 78, 47634775. doi:10.1063/1.445276CrossRefGoogle Scholar
Young, JR (1969). Outgassing characteristics of stainless steel and aluminum with different surface treatments. J Vac Sci Technol 6, 398400.CrossRefGoogle Scholar
Supplementary material: File

Felfer et al. supplementary material

Felfer et al. supplementary material 1

Download Felfer et al. supplementary material(File)
File 93.6 MB
Supplementary material: File

Felfer et al. supplementary material

Felfer et al. supplementary material 2

Download Felfer et al. supplementary material(File)
File 34.3 KB