Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:38:59.645Z Has data issue: false hasContentIssue false

Anatomy, Histochemistry, and Antifungal Activity of Anacardium humile (Anacardiaceae) Leaf

Published online by Cambridge University Press:  20 November 2015

Vanessa de A. Royo
Affiliation:
Laboratório de Produtos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Maria Olívia Mercadante-Simões*
Affiliation:
Laboratório de Anatomia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Leonardo M. Ribeiro
Affiliation:
Laboratório de Micropropagação, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Dario A. de Oliveira
Affiliation:
Laboratório de Bioprospecção e Recursos Genéticos, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Marcela Magda R. Aguiar
Affiliation:
Laboratório de Produtos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Ellenhise R. Costa
Affiliation:
Laboratório de Anatomia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
Perácio Rafael B. Ferreira
Affiliation:
Laboratório de Bioprospecção e Recursos Genéticos, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Campus Pr. Darcy Ribeiro, Montes Claros, MG 39401-089, Brasil
*
*Corresponding author. omercadante@hotmail.com
Get access

Abstract

Leaves of Anacardium humile are used in Brazilian traditional medicine for the treatment of intestinal disturbances and skin lesions. This study aimed to define leaf diagnostic structural characters, to propose a new method of phytochemical analysis of secretions, prospect flavonoids and alkaloids, and to evaluate their inhibitory activity on Candida albicans. Common anatomical, phytochemical, and microbiological methods were used. Leaves of Anacardium occidentale were used as a reference for the structural analyses. The main structural characters were closed vascular system, absence of ducts at the medulla, bilateral mesophyll, absence of bundle sheath extension, and secretory idioblasts at the xylem. The ducts present schizogenous origin, and secreting activity is restricted to the initial phases of leaf blade expansion. The proposed new phytochemical method is practical and inexpensive and has potential for wide application. The abundance of tannins and flavonoids is related to medicinal use. A single peak in high-performance liquid chromatography indicated the presence of a pure substance not previously reported. The extract had a strong inhibitory effect on C. albicans. The obtained results confirm the potential of A. humile for the prospection of new bioactive compounds.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agra, M.F., Freitas, P.F. & Barbosa-Filho, J.M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Braz J Pharmacognosy 17, 114140.CrossRefGoogle Scholar
Ahmad, I. & Beg, A.Z. (2001). Antimicrobial and phytochemical studies on 45 Indian plants against multi-drug resistant human pathogens. J Ethnopharmacol 74, 113123.CrossRefGoogle ScholarPubMed
Aligianis, N., Kalpoutzakis, E., Mitaku, S. & Chinou, I.B. (2001). Composition and antimicrobial activity of the essential oil of two Origanum species. J Agric Food Chem 49, 41684170.CrossRefGoogle Scholar
Alvarenga, F.Q., Mota, B.C.F., Leite, M.N., Fonseca, J.M.S., Oliveira, D.A., Royo, V.A., Silva, M.L.A., Esperandim, V., Borges, A. & Laurentiz, R.S. (2013). In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine. J Ethnopharmacol 150, 280284.CrossRefGoogle ScholarPubMed
Álvarez, R., Encina, A. & Pérez Hidalgo, N. (2008). Pistacia terebinthus L. leaflets: An anatomical study. Plant Syst Evol 272, 107118.CrossRefGoogle Scholar
Barbosa, W.L.R., Pinto, L.N., Quignard, E., Vieira, J.M.S., Silva, J.O.C. Jr. & Albuquerque, S. (2006). Arrabidaea chica (HBK) Verlot: Phytochemical approach, antifungal and trypanocidal activities. Braz J Pharmacognosy 18, 544548.CrossRefGoogle Scholar
Barbosa-Filho, J.M., Piuvezam, M.R., Moura, M.D., Silva, M.S., Lima, K.V.B., Leitão-da-Cunha, E.V.L., Fechine, I.M. & Takemura, O.S. (2006). Anti-inflammatory activity of alkaloids: A twenty-century review. Braz J Pharmacognosy 16, 109139.CrossRefGoogle Scholar
Brito, E.H.S., Fontenelle, R.O.S., Brilhante, R.S.N., Cordeiro, R.A., Monteiro, A.J., Sidrim, J.J.C. & Rocha, M.F.G. (2009). The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs. Vet J 182, 320326.CrossRefGoogle ScholarPubMed
Cain, A.J. (1974). The use of Nile blue in the examination of lipids. Q J Microsc Sci 88, 383392.Google Scholar
Carrió, E. & Vallès, J. (2012). Ethnobotany of medicinal plants used in Eastern Mallorca (Balearic Islands, Mediterranean Sea). J Ethnopharmacol 141, 10211040.CrossRefGoogle ScholarPubMed
Chaithra, M., Vivek, M.N., Asha, M.M., Kambar, Y., Prashith Kekuda, T.R. & Mallikarjun, N. (2013). Inhibitory effect of leaf and bark of Anacardium occidentale against clinical isolates of Staphylococcus aureus and Streptococcus mutans . J Drug Deliv Ther 3, 8083.Google Scholar
Chaves, M.H., Citó, A.M.G.L., Lopes, J.A.D., Costa, D.A., Oliveira, C.A.A., Costa, A.F. & Brito-Júnior, F.E.M. (2010). Total phenolics, antioxidant activity and chemical constituents from extracts of Anacardium occidentale L., Anacardiaceae. Braz J Pharmacognosy 20, 106112.CrossRefGoogle Scholar
Christodoulakis, N.S., Mamoucha, S., Termentzi, A. & Fokialakis, N. (2015). Leaf structure and histochemistry of the hardy evergreen Euphorbia characias L. (Mediterranean spurge). Flora 210, 1318.CrossRefGoogle Scholar
CLSI . (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard, CLSI document M07-A9. Wayne, USA: Clinical and Laboratory Standards Institute.Google Scholar
Correia, S.J., David, J.P. & David, J.M. (2006). Metabólitos secundários de espécies de Anacardiaceae. Quim Nova 29, 12871300.CrossRefGoogle Scholar
Das, S. & Rosazza, J.P.N. (2006). Microbial and enzymatic transformations of flavonoids. J Nat Prod 69, 499508.CrossRefGoogle ScholarPubMed
David, R. & Carde, J.P. (1964). Coloration différentielle des inclusions lipidique et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. CR Acad Sci D Nat 258, 13381340.Google Scholar
Ferreira, P.R.B., Mendes, C.S.O., Rodrigues, C.G., Rocha, J.C.M., Royo, V.A., Valério, H.M. & Oliveira, D.A. (2012). Antibacterial activity tannin-rich fraction from leaves of Anacardium humile . Cienc Rural 42, 18611864.CrossRefGoogle Scholar
Feucht, W., Treutter, D., Dithmar, H. & Polster, J. (2008). Microspore development of three coniferous species: Affinity of nuclei for flavonoids. Tree Physiol 28, 17831791.CrossRefGoogle ScholarPubMed
Franceschi, V.R. & Nakata, P.A. (2005). Calcium oxalate in plants: Formation and function. Annu Rev Plant Biol 56, 4171.CrossRefGoogle ScholarPubMed
Freires, I.A. (2011). Atividade antifúngica de Schinus terebinthifolius (Aroeira) sobre cepas do gênero Candida . Rev Odontol Bras Central 20, 4145.Google Scholar
Furr, M. & Mahlberg, P.G. (1981). Histochemical analyses of lacticifers and glandular trichomes in Cannabis sativa . J Nat Prod 4, 153159.CrossRefGoogle Scholar
Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R. & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14, 96439684.CrossRefGoogle ScholarPubMed
Havsteen, B.H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96, 67202.CrossRefGoogle ScholarPubMed
Johansen, D.A. (1940). Plant Microtechnique. New York, NY: McGraw-Hill Books.Google Scholar
Karnovsky, M.J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27, 137138.Google Scholar
Kingston, D.G.I. (2011). Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74, 496511.CrossRefGoogle ScholarPubMed
Lacchia, A.P.S. & Carmello-Guerreiro, S.M. (2009). Aspectos ultra-estruturais dos canais secretores em órgãos vegetativos e reprodutivos de Anacardiaceae. Acta Bot Bras 23, 376388.CrossRefGoogle Scholar
Lima, I.L.P., Scariot, A., Medeiros, M.B. & Sevilha, A.C. (2012). Diversidade e uso de plantas do Cerrado em comunidade de Geraizeiros no norte do estado de Minas Gerais, Brasil. Acta Bot Bras 23, 675684.CrossRefGoogle Scholar
Mace, M.E. & Howell, C.R. (1974). Histochemistry and identification of condensed tannin precursor in roots of cotton seedlings. Can J Bot 52, 24232426.CrossRefGoogle Scholar
Magro, A., Carolino, M., Bastos, M. & Mexia, A. (2006). Efficacy of plant extracts against stored-products fungi. Rev Iberoam Micol 23, 176178.CrossRefGoogle ScholarPubMed
Martins, A.R., Soares, M.M., Redher, V.L.G., Bajay, M.M., Villela, P.M.S., Zucchi, M.I. & Appezzato-da-Glória, A. (2014). Use of anatomical, chemical, and molecular genetic characteristics in the quality control of medicinal species: A case study of sarsaparilla (Smilax spp.). Econ Bot 6, 410425.CrossRefGoogle Scholar
Mauro, C., Pereira, A.M.S., Silva, C.P., Missima, J., Ohnuki, T. & Rinaldi, R.B. (2007). Anatomical study of species from savanna-like formation, Anemopaegma arvense (Vell.) Stellf. ex de Souza (catuaba), Zeyheria montana Mart. (bolsa-de-pastor) and Jacaranda decurrens Chamisso (caroba) – Bignoniaceae. Rev Bras Farmacognosy 17, 262265.CrossRefGoogle Scholar
Mazia, D., Brewer, P.A. & Alfert, M. (1953). The cytochemical staining and measurement of protein with mercuric bromophenol blue. Biol Bull 104, 5767.CrossRefGoogle Scholar
Mercadante-Simões, M.O., Mazzottini-dos-Santos, H.C., Nery, L.A., Ferreira, P.R.B., Ribeiro, L.M., Royo, V.A. & Oliveira, D.A. (2014). Structure, histochemistry and phytochemical profile of the bark of the sobol and aerial stem of Tontelea micrantha (Celastraceae – Hippocrateoideae). Ann Braz Acad Sci 86, 11671179.CrossRefGoogle ScholarPubMed
Mercadante-Simões, M.O. & Paiva, E.A.S. (2013). Leaf colleters in Tontelea micrantha (Celastraceae, Salacioideae): Ecological, morphological and structural aspects. CR Biol 336, 400406.CrossRefGoogle ScholarPubMed
Metcalfe, C.R. & Chalk, L. (1950). Anatomy of the Dicotyledons. Oxford: Clarendon Press.Google Scholar
Milani, J.F., Rocha, J.F. & Teixeira, S.P. (2012). Oleoresin glands in copaíba (Copaifera trapezifolia Hayne: Leguminosae), a Brazilian rainforest tree. Trees 26, 769775.CrossRefGoogle Scholar
Montejano, H.A., Gervaldo, M. & Bertolotti, S.G. (2005). The excited-states quenching of resazurin and resorufin by p-benzoquinones in polar solvents. Dyes Pigments 64, 117124.CrossRefGoogle Scholar
Mota, B.C.F., Royo, V.A.R., Fonseca, J.M.S., Santos, A.C., Melo, A.F. Jr., Menezes, E.V., Esperandim, V.R. & Laurentiz, R.S. (2015). Comparative studies between the chemical constituents and biological properties of the extracts from the leaves and barks of Myracrodruon urundeuva Fr. All. J Med Plant Res 9, 159168.Google Scholar
Namrita, L. & Navneet, K. (2014). Are plants used for skin care in South Africa fully explored? J Ethnopharmacol 153, 6184.Google Scholar
Nyanzi, R., Awouafack, M.D., Steenkamp, P., Jooste, P.J. & Eloff, J.N. (2014). Anticandidal activity of cell extracts from 13 probiotic Lactobacillus strains and characterisation of lactic acid and a novel fatty acid derivative from one strain. Food Chem 164, 470475.CrossRefGoogle Scholar
O’Brien, T.P., Feder, N. & McCully, M.E. (1964). Polychromatic staining of plant cell walls by toluidine. Protoplasma 59, 368373.CrossRefGoogle Scholar
Onasanwo, S.A., Fabiyi, T.D., Oluwole, F.S. & Olaleye, S.B. (2013). Analgesic and anti-inflammatory properties of the leaf extracts of Anacardium occidentalis in the laboratory rodents. Niger J Physiol Sci 27, 6571.Google Scholar
Palomino, J.C., Martin, A., Camacho, M., Guerra, H., Swings, J.A.N. & Portaels, S. (2002). Resazurin microtiter assay plate: Simple and inexpensive method. Antimicrob Agents Chemother 47, 36163619.Google Scholar
Paiva, E.A.S. & Machado, S.R. (2005). Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals. Braz Arch Biol Technol 48, 147153.CrossRefGoogle Scholar
Paiva, E.A.S., Pinho, S.Z. & Oliveira, D.M.T. (2011). Large plant samples: How to process for GMA embedding? In Light Microscopy: Methods and Protocols, Chiarini-Garcia, H. & Melo, R.C.N. (Eds.), pp. 3749). New York, NY: Springer/Humana Press.CrossRefGoogle Scholar
Pearse, A.G.E. (1980). Histochemistry: Theoretical and Applied. Edinburgh: Churchill Livingstone.Google Scholar
Pizzolato, T.D. & Lillie, R.D. (1973). Mayers tannic acid-ferric chloride stain for mucins. J Histochem Cytochem 21, 5664.CrossRefGoogle Scholar
Reis, A.L.L.E., Silva, D.S.S., Silva, K.L.F. & Chagas, D.B. (2014). Caracterização anatômica e histoquímica de raízes e plântulas de Anacardium occidentale L. (Anacardiaceae). Rev Arvore 38, 209219.CrossRefGoogle Scholar
Rocha, M.S., Figueiredo, R.W., Araújo, M.A.M. & Moreira-Araújo, R.S.R. (2013). Physical and chemical characterization and antioxidant activity (in vitro) of fruit of the Piaui savanna. Rev Bras Frutic 35, 933941.CrossRefGoogle Scholar
Sant’Anna-Santos, B.F., Thadeo, M., Meira, R.M.S.A. & Ascensão, L. (2006). Anatomia e histoquímica das estruturas secretoras do caule de Spondias dulcis Forst. (Anacardiaceae). Rev Arvore 30, 481489.CrossRefGoogle Scholar
Shinde, V.M., Dhalwal, K., Potdar, M. & Mahadik, K.R. (2009). Application of quality control principles to herbal drugs. Int J Phytomed 1, 410.CrossRefGoogle Scholar
Tona, L., Kambu, K., Ngimbi, N., Cimanga, K. & Vlietnick, A.J. (1998). Antiamoebic and phytochemical screening of some Congolese medical plants. J Ethnopharmacol 61, 5765.CrossRefGoogle Scholar
Vidal, B.C. (1970). Dichroism in collagen bundles stained with xylidine-Ponceau 2R. Ann Histochim 15, 289296.Google ScholarPubMed
World Health Organization (1999). Monographs on Selected Medicinal Plants. Geneva: WHO.Google Scholar
Zayachkivska, O.S., Konturek, S.J., Drozdowicz, D., Konturek, P.C., Brzozowski, T. & Ghegotsky, M.R. (2005). Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol 56, 219231.Google ScholarPubMed