Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T23:58:40.127Z Has data issue: false hasContentIssue false

Application of Focused Ion Beam to Atom Probe Tomography Specimen Preparation from Mechanically Alloyed Powders

Published online by Cambridge University Press:  28 September 2007

Pyuck-Pa Choi
Affiliation:
Nano-Materials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
Tala'at Al-Kassab
Affiliation:
Insitut für Materialphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Young-Soon Kwon
Affiliation:
Research Center for Machine Parts and Materials Processing, University of Ulsan, P.O. Box 18, Ulsan 680-749, Korea
Ji-Soon Kim
Affiliation:
Research Center for Machine Parts and Materials Processing, University of Ulsan, P.O. Box 18, Ulsan 680-749, Korea
Reiner Kirchheim
Affiliation:
Insitut für Materialphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Get access

Abstract

Focused ion-beam milling has been applied to prepare needle-shaped atom probe tomography specimens from mechanically alloyed powders without the use of embedding media. The lift-out technique known from transmission electron microscopy specimen preparation was modified to cut micron-sized square cross-sectional blanks out of single powder particles. A sequence of rectangular cuts and annular milling showed the highest efficiency for sharpening the blanks to tips. First atom probe results on a Fe95Cu5 powder mechanically alloyed in a high-energy planetary ball mill for 20 h have been obtained. Concentration profiles taken from this powder sample showed that the Cu distribution is inhomogeneous on a nanoscale and that the mechanical alloying process has not been completed yet. In addition, small clusters of oxygen, stemming from the ball milling process, have been detected. Annular milling with 30 keV Ga ions and beam currents ≥50 pA was found to cause the formation of an amorphous surface layer, whereas no structural changes could be observed for beam currents ≤10 pA.

Type
MATERIALS APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, J.S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1, 29432951.Google Scholar
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J., Bouet, M. & Menand, A. (1993). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instr 64, 29112919.Google Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. Mat Res Soc Symp Proc 480, 1927.Google Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1998). Applications of the FIB lift-out technique. Microsc Res Tech 41, 285290.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.Google Scholar
Jayaram, R., Jones, J.W. & Miller, M.K. (1994). A field ion microscopy study of nanocrystalline Ni and Ni3Al. Appl Surf Sci 76–77, 165171.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Anthony, T.C., Rozdilsky, I.M., Cerezo, A. & Smith, G.W.D. (1998). Focused ion-beam milling for field-ion specimen preparation: Preliminary investigations. Ultramicroscopy 75, 147159.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Cerezo, A. & Smith, G.W.D. (1999a). Focused ion-beam specimen preparation for atom probe field-ion microscopy characterization of multilayer film structures. Nanotechnology 10, 4550.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.W.D. (1999b). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.Google Scholar
Larson, D.J., Petford-Long, A.K., Ma, Y.Q. & Cerezo, A. (2004). Information storage materials: Nanoscale characterization by three-dimensional atom probe analysis. Acta Mater 52, 28472862.Google Scholar
Lomness, J.K., Giannuzzi, L.A. & Hampton, M.D. (2001). Site-specific transmission electron microscope characterization of micrometer-sized particles using the focused ion beam lift-out technique. Microsc Microanal 7, 418423.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Clarendon Press.
Miller, M.K. & Russell, K.F. (2007). Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107, 761766.Google Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.Google Scholar
Miller, M.K & Smith, G.D.W. (1989). Atom Probe Microanalysis. Warrendale, PA: Materials Research Society.
Ohsaki, S., Hono, K., Hidaka, H. & Takaki, S. (2004). Focused ion beam fabrication of field-ion microscope specimens from mechanically milled pearlitic steel powder, J Electronmicr 53, 523525.Google Scholar
Overwijk, M.H.F., Van Den Heuvel, F.C. & Bulle-Lieuwma, C.W.T. (1993). Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J Vac Sci Technol B 11, 20212024.Google Scholar
Prenitzer, B.I., Giannuzzi, L.A., Newman, K., Brown, S.R., Irwin, R.B., Shofner, T.L. & Stevie, F.A. (1998). Transmission electron microscope specimen preparation of Zn powder using the focused ion beam lift-out technique. Met Mater Trans A 29, 23992406.Google Scholar
Readinger, E.D., Wolter, S.D., Waltemeyer, D.L., Delucca, J.M., Mohney, S.E., Prenitzer, B.I. & Giannuzzi, L.A. (1999). Wet thermal oxidation of GaN. J Electron Mater 28, 257260.Google Scholar
Stevie, F.A., Shane, T.C., Kahora, P.M., Hull, R., Bahnck, D., Kannan, V.C. & David, E. (1995). Applications of focused ion beams in microelectronics production. Surf Interface Anal 23, 6168.Google Scholar
Stevie, F.A., Vartuli, C.B., Giannuzzi, L.A., Shofner, T.L., Brown, S.R., Rossie, B., Hillion, F., Millis, R.H., Antoneel, M., Irwin, R.B. & Purcell, B.M. (2001). Application of focused ion beam lift-out specimen preparation to TEM, SEM, STEM, AES, and SIMS analysis. Surf Interface Anal 31, 345351.Google Scholar
Suryanarayana, C. (2001). Mechanical alloying and milling. Progr Mater Sci 46, 1184.Google Scholar
Thompson, G.B., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thompson, G.B., Miller, M.K. & Fraser, H.L. (2004). Some aspects of atom probe specimen preparation and analysis of thin film materials. Ultramicroscopy 100, 2534.Google Scholar
Thompson, K., Gorman, D., Larson, D.J, Van Leer, B. & Hong, L. (2006). Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12(Suppl. S02), 17361737.Google Scholar
Wu, F., Bellon, P., Lau, M.L., Lavernia, E.J., Lusby, T.A., Melmed, A.J. (2002). A new approach to preparing tips for atom probe field ion microscopy from powder materials. Mater Sci Eng A 327, 2023.Google Scholar
Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Progr Mater Sci 49, 537560.Google Scholar