Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T18:06:44.390Z Has data issue: false hasContentIssue false

The Applications of In Situ Electron Energy Loss Spectroscopy to the Study of Electron Beam Nanofabrication

Published online by Cambridge University Press:  22 May 2009

Shiahn J. Chen
Affiliation:
MicroInstruments and Systems Laboratory, Laboratory for Surface Science and Technology, University of Maine Orono, ME 04469, USA
David G. Howitt
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA
Brian C. Gierhart
Affiliation:
MicroInstruments and Systems Laboratory, Laboratory for Surface Science and Technology, University of Maine Orono, ME 04469, USA
Rosemary L. Smith
Affiliation:
MicroInstruments and Systems Laboratory, Laboratory for Surface Science and Technology, University of Maine Orono, ME 04469, USA
Scott D. Collins*
Affiliation:
MicroInstruments and Systems Laboratory, Laboratory for Surface Science and Technology, University of Maine Orono, ME 04469, USA
*
Corresponding author. E-mail: scott.collins@maine.edu
Get access

Abstract

An in situ electron energy loss spectroscopy (EELS) technique has been developed to investigate the dynamic processes associated with electron-beam nanofabrication on thin membranes. In this article, practical applications germane to e-beam nanofabrication are illustrated with a case study of the drilling of nanometer-sized pores in silicon nitride membranes. This technique involves successive acquisitions of the plasmon-loss and the core-level ionization-loss spectra in real time, both of which provide the information regarding the hole-drilling kinetics, including two respective rates for total mass loss, individual nitrogen and silicon element depletion, and the change of the atomic bonding environment. In addition, the in situ EELS also provides an alternative method for endpoint detection with a potentially higher time resolution than by imaging. On the basis of the time evolution of in situ EELS spectra, a qualitative working model combining knock-on sputtering, irradiation-induced mass transport, and phase separation can be proposed.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akenson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77, 32273233.CrossRefGoogle Scholar
Bell, D.C. (2007). Nanoscale engineering and e-beam lithography using (S)TEM. Microsc Microanal 13(Suppl 2), 532533.CrossRefGoogle Scholar
Berger, S.D., Salisbury, I.G., Milne, R.H., Imeson, D. & Humphreys, C.J. (1987). Electron energy-loss spectroscopy studies of nanometer-scale structures in alumina produced by intense electron-beam irradiation. Phil Mag B 55, 341358.CrossRefGoogle Scholar
Bullough, T.J. (1997). Sputtering and the formation of nanometer voids and holes in aluminum in a scanning transmission electron microscope. Phil Mag A 75, 6986.CrossRefGoogle Scholar
Chen, G.S., Boothroyd, C.B. & Humphreys, C.J. (1998). Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures. Phil Mag A 78, 491506.CrossRefGoogle Scholar
Crozier, P.A. (2006). In-situ environmental STEM for dynamic nanochemical analysis. Microsc Microanal 12(Suppl 2), 13461347.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. New York: Plenum Press.CrossRefGoogle Scholar
Gierhart, B.C., Howitt, D.G., Chen, S.J., Zhu, Z., Kotecki, D.E., Smith, R.L. & Collins, S.D. (2007). Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA. Transducers '07/Eurosensors XXI Conference, Lyon, France, June 10–14, 2007, Digest of Technical Papers, Vol. 1, p. 399.CrossRefGoogle Scholar
Howitt, D.G., Chen, S.J., Gierhart, B., Smith, R.L. & Collins, S.D. (2008). The electron beam hole-drilling of silicon nitride thin films. J Appl Phys 103, 24310-7.CrossRefGoogle Scholar
Humphreys, C.J., Bullough, T.J., Devenish, R.W., Maher, D.M. & Turner, P.S. (1990). Electron beam nano-etching in oxides, fluorides, metals, and semiconductors. Scanning Micro Suppl 4, 185192.Google Scholar
Iqbal, A., Jackson, W.B., Tsai, C.C., Allen, J.W. & Bates, C.W. Jr. (1987). Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy. J Appl Phys 61, 29472954.CrossRefGoogle Scholar
Joy, D.C. (1986). Quantitative microanalysis using EELS. In Principles of Analytical Electron Microscop, Joy, D.C., Romig, A.D. Jr. & Goldstein, J. I. (Eds.), pp. 277299. New York: Plenum Press.CrossRefGoogle Scholar
Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93, 1377013773.CrossRefGoogle ScholarPubMed
Kim, M.J., McNally, B., Murata, K. & Meller, A. (2007). Characteristics of solid-state nanometer pores fabricated using a transmission electron microscope. Nanotechnology 18, 15.CrossRefGoogle Scholar
Kushita, K.N., Hojou, K., Furuno, S. & Otsu, H. (1992). In situ EELS observation of diamond during hydrogen-ion bombardment. J Nucl Mater 191, 346350.CrossRefGoogle Scholar
Medlin, D.L. & Howitt, D.G. (1991). The role of sputtering and displacement damage in the electron scribe process. Phil Mag Lett 64, 133141.CrossRefGoogle Scholar
Mkhoyan, K.A., Babineca, T., Maccagnanoa, S.E., Kirklanda, E.J. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107, 345355.CrossRefGoogle ScholarPubMed
Mkhoyan, K.A., Silcox, J., Mcguire, M.A. & Disalvo, F.J. (2006). Radiolytic purification of CaO by electron beams. Philos Mag 86, 29072917.CrossRefGoogle Scholar
Mochel, M.E., Humphreys, C.J., Eades, J.A., Mochel, J.M. & Petford, A.M. (1983). Electron beam writing on a 20Å scale in metal β-alumina. Appl Phys Lett 42, 392394.CrossRefGoogle Scholar
Robertson, J. (1991). Electronic structure of silicon nitride. Philos Mag B 63, 4777.CrossRefGoogle Scholar
Shimojo, M., Mitsuishi, K., Tanaka, M., Han, M. & Furuya, K. (2004). Application of transmission electron microscopes to nanometre sized fabrication by means of electron beam-induced deposition. J Micros 214, 7679.CrossRefGoogle ScholarPubMed
Storm, A.J., Chen, J.H., Ling, X.S., Zanderbergan, H.W. & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2, 537540.CrossRefGoogle ScholarPubMed
Trasobares, S., Stéphan, O. & Colliex, C. (2002). Time-resolved electron energy loss spectroscopy as a tool for controlling and monitoring the early stages of electron beam induced transformations. Microsc Microanal 8(Suppl 2), 13841385.CrossRefGoogle Scholar
Turner, P.S., Bullough, T.J., Devenish, R.W., Maher, D.M. & Humphreys, C.J. (1990). Nanometer hole formation in magnesium oxide using electron beams. Phil Mag Lett 61, 181193.CrossRefGoogle Scholar
van Dorp, W.B., Hagen, C.W., van Someren, B., Kruit, P. & Crozier, P.A. (2005). Approaching the resolution limit of nanometer scale electron beam induced deposition. Nano Lett 5, 13031307.CrossRefGoogle ScholarPubMed
Wu, M.-Y., Krapf, D., Zandbergen, M., Zandbergen, H. & Bastson, P.E. (2005). Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl Phys Lett 87, 113106-8.CrossRefGoogle Scholar