Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T01:29:03.816Z Has data issue: false hasContentIssue false

Atom Column Indexing: Atomic Resolution Image Analysis Through a Matrix Representation

Published online by Cambridge University Press:  17 November 2014

Xiahan Sang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, USA
Adedapo A. Oni
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, USA
James M. LeBeau*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, USA
*
*Corresponding author. jmlebeau@ncsu.edu
Get access

Abstract

Here, we report the development of an approach to map atomic resolution images into a convenient matrix representation. Through the combination of two-dimensional Gaussian fitting and the projective standard deviation, atom column locations are projected onto two noncollinear reference lattice vectors that are used to assign each a unique (i, j) matrix index. By doing so, straightforward atomic resolution image analysis becomes possible. Using practical examples, we demonstrate that the matrix representation greatly simplifies categorizing atom columns to different sublattices. This enables a myriad of direct analyses, such as mapping atom column properties and correlating long-range atom column pairs. MATLAB source code can be downloaded from https://github.com/subangstrom/aci.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V. & Pennycook, S.J. (2010 a). Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105, 087204.CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Ovchinnikov, O.S., Chang, H.J., Oxley, M.P., Yu, P., Seidel, J., Eliseev, E.A., Morozovska, A.N., Ramesh, R., Pennycook, S.J. & Kalinin, S.V. (2010 b). Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4(10), 60716079.CrossRefGoogle ScholarPubMed
Gonzalez, R.C. & Woods, R.E. (2006). Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall Inc.Google Scholar
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3), 131146.CrossRefGoogle Scholar
Jones, L. & Nellist, P.D. (2013). Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc Microanal 19(04), 10501060.CrossRefGoogle ScholarPubMed
Klenov, D.O. & Stemmer, S. (2006). Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106(10), 889901.Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.Google Scholar
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12), 16531658.CrossRefGoogle ScholarPubMed
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.-H., Eom, C.-B., Schlom, D.G., Chen, L.-Q. & Pan, X. (2011). Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett 11(2), 828834.Google Scholar
Robb, P.D. & Craven, A.J. (2008). Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images. Ultramicroscopy 109(1), 6169.CrossRefGoogle ScholarPubMed
Sang, X. & LeBeau, J.M. (2014). Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 2835.CrossRefGoogle ScholarPubMed
Van Aert, S., Verbeeck, J., Erni, R., Bals, S., Luysberg, M., Van Dyck, D. & Van Tendeloo, G. (2009). Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 109(10), 12361244.CrossRefGoogle ScholarPubMed
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I. & Voyles, P.M. (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.CrossRefGoogle ScholarPubMed
Zuo, J.-M., Shah, A.B., Kim, H., Meng, Y., Gao, W. & Rouviere, J.-L. (2014). Lattice and strain analysis of atomic resolution Z-contrast images based on template matching. Ultramicroscopy 136, 5060.Google Scholar