Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T13:10:17.197Z Has data issue: false hasContentIssue false

Automated Atom-By-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data

Published online by Cambridge University Press:  20 March 2017

Michal Dagan
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PHUK
Baptiste Gault
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PHUK Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf, Germany
George D. W. Smith
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PHUK
Paul A. J. Bagot
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PHUK
Michael P. Moody*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PHUK
*
*Corresponding author. michael.moody@materials.ox.ac.uk
Get access

Abstract

An automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen’s surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM’s potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of “out of sequence” events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.

Type
Reconstruction
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akré, J., Danoix, F., Leitner, H. & Auger, P. (2009). The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109(5), 518523.Google Scholar
Azubel, M., Koivisto, J., Malola, S., Bushnell, D., Hura, G.L., Koh, A.L., Tsunoyama, H., TSUKUDA, T., PETTERSSON, M., HÄKKINEN, H. & KORNBERG, R.D. (2014). Electron microscopy of gold nanoparticles at atomic resolution. Science 345(6199), 909912.Google Scholar
Bolt, H., Barabash, V., Federici, G., Linke, J., Loarte, A., Roth, J. & Sato, K. (2002). Plasma facing and high heat flux materials—Needs for ITER and beyond. J Nucl Mater 307–311, 4352.Google Scholar
Cazottes, S., Vurpillot, F., Fnidiki, A., Lemarchand, D., Baricco, M. & Danoix, F. (2012). Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy. Microsc Microanal 18(5), 11291134.CrossRefGoogle Scholar
Dagan, M., Hanna, L.R., Xu, A., Roberts, S.G., Smith, G.D.W., Gault, B., Edmondson, P.D., Bagot, P.A.J. & Moody, M.P. (2015). Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387394.Google Scholar
Danoix, F., Epicier, T., Vurpillot, F. & Blavette, D. (2012). Atomic-scale imaging and analysis of single layer GP zones in a model steel. J Mater Sci 47(3), 15671571.CrossRefGoogle Scholar
Davis, J.W., Barabash, V.R., Makhankov, A., Plöchl, L. & Slattery, K.T. (1998). Assessment of tungsten for use in the ITER plasma facing components. J Nucl Mater 258–263, 308312.Google Scholar
Fortes, M.A., Smith, D.A. & Ralph, B. (1968). The interpretation of field-ion micrographs: Contrast from perfect dislocation loops. Philos Mag 17(145), 169176.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. Springer Series in Materials Science. New York, NY: Springer New York.Google Scholar
Gault, B., Moody, M.P., De Geuser, F., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16(1), 99110.Google Scholar
Jessner, P., Danoix, R., Hannoyer, B. & Danoix, F. (2009). Investigations of the nitrided subsurface layers of an Fe–Cr-model alloy. Ultramicroscopy 109(5), 530534.Google Scholar
Kellogg, G.L. (1991). Temperature dependence of surface self-diffusion on Pt(001). Surf Sci 246(1–3), 3136.CrossRefGoogle Scholar
Kellogg, G.L., Wright, A.F. & Daw, M.S. (1991). Surface diffusion and adatom‐induced substrate relaxations of Pt, Pd, and Ni atoms on Pt(001). J Vac Sci Technol A 9(3), 17571760.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78(3), 31101.Google Scholar
Li, Z.Y., Young, N.P., Di Vece, M., Palomba, S., Palmer, R.E., Bleloch, A.L., Curley, B.C., Johnston, R.L., Jiang, J. & Yuan, J. (2008). Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174), 4648.Google Scholar
Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R. & Stoller, R.E. (2004). Materials needs for fusion, generation IV fission reactors and spallation neutron sources—Similarities and differences. J Nucl Mater 329–333, 166172.Google Scholar
Marceau, R.K.W., Choi, P. & Raabe, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239247.Google Scholar
Miller, M.K., Kelly, T.F., Rajan, K. & Ringer, S.P. (2012). The future of atom probe tomography. Mater Today 15(4), 158165.Google Scholar
Moody, M.P., Ceguerra, A.V, Breen, A.J., Cui, X.Y., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C. & Ringer, S.P. (2014). Atomically resolved tomography to directly inform simulations for structure–property relationships. Nat Commun 5, 5501.Google Scholar
Müller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102(3), 624631.Google Scholar
Neu, R., Dux, R., Kallenbach, A., Pütterich, T., Balden, M., Fuchs, J., Herrmann, A., MAGGI, C.F., O’MULLANE, M., PUGNO, R., RADIVOJEVIC, I., ROHDE, V., SIPS, A.C.C., SUTTROP, W. & WHITEFORD, A. (2005). Tungsten: An option for divertor and main chamber plasma facing components in future fusion devices. Nucl Fusion 45(3), 209218.CrossRefGoogle Scholar
Philipps, V. (2011). Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater 415(1), S2S9.Google Scholar
Seidman, D.N. (1978). The study of radiation damage in metals with the field-ion and atom-probe microscopes. Surf Sci 70(1), 532565.Google Scholar
Seidman, D.N., Current, M.I., Pramanik, D. & Wei, C.-Y. (1981). Direct observations of the primary state of radiation damage of ion-irradiated tungsten and platinum. Nucl Instrum Methods 182–183, 477481.Google Scholar
Smith, D.A., Fortes, M.A., Kelly, A. & Ralph, B. (1968). Contrast from stacking faults and partial dislocations in the field-ion microscope. Philos Mag 17(149), 10651077.CrossRefGoogle Scholar
Speicher, C., Pimbley, W., Attardo, M., Galligan, J. & Brenner, S. (1966). Observation of vacancies in the field-ion microscope. Phys Lett 23(3), 194196.Google Scholar
Stiller, K. & Andrén, H.-O. (1982). Faulty field evaporation at Di-vacancies in {222} tungsten. Surf Sci 114(2–3), L57L61.Google Scholar
Vurpillot, F., Gault, B., Geiser, B.P. & Larson, D.J. (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.Google Scholar
Vurpillot, F., Gilbert, M. & Deconihout, B. (2007). Towards the three-dimensional field ion microscope. Surf Interface Anal 39(2–3), 273277.Google Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42(12), 125502.CrossRefGoogle Scholar
Wang, S.C. & Ehrlich, G. (1989). Imaging and diffusion of individual iridium adatoms on Ir(111). Surf Sci 224(1–3), L997L1003.Google Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61(1), 109142.Google Scholar
Wei, C.-Y., Current, M.I. & Seidman, D.N. (1981). Direct observation of the primary state of damage of ion-irradiated tungsten I. Three-dimensional spatial distribution of vacancies. Philos Mag A 44(2), 459491.Google Scholar
Wei, C.-Y. & Seidman, D.N. (1979). Direct observation of the vacancy structure of depleted zones in tungsten ion irradiated at 10 K. Appl Phys Lett 34(10), 622.Google Scholar
Xu, R., Chen, C.-C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, M., YANG, Y., RAMEZANI-DAKHEL, H., SAWAY, M. R., HEINZ, H., MARKS, L. D., ERCIUS, P. & MIAO, J. (2015). hree-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater 14(11), 10991103.Google Scholar

Dagan supplementary materials S1

Supplementary Video

Download Dagan supplementary materials S1(Video)
Video 2.3 MB

Dagan supplementary materials S2

Supplementary Video

Download Dagan supplementary materials S2(Video)
Video 1.3 MB