Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T12:40:46.111Z Has data issue: false hasContentIssue false

Biodegradation Process of α-Tricalcium Phosphate and α-Tricalcium Phosphate Solid Solution Bioceramics In Vivo: A Comparative Study

Published online by Cambridge University Press:  03 July 2013

Piedad N. de Aza*
Affiliation:
Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. Universidad s/n, 03202 Elche (Alicante), Spain
Zofia B. Luklinska
Affiliation:
Materials Science Department, SEMS, Queen Mary University of London, Mile End Road London E1 4NS, UK
Jose E. Mate-Sanchez de Val
Affiliation:
Department of Restorative Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Ava. Marques de los Velez s/n, 30008 Murcia, Spain
Jose L. Calvo-Guirado
Affiliation:
Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Ava. Marques de los Velez s/n, 30008 MurciaSpain
*
*Corresponding author. E-mail: piedad@umh.es
Get access

Abstract

This article reports the structure and morphology of the in vivo interface between implants composed of either α tricalcium phosphate (αTCP) or αTCP doped with 3.0 wt% dicalcium silicate (αTCPss) ceramic, and natural bone of rabbit tibias. Both interfaces developed a new bone layer in direct contact with the implants after 4 and 8 weeks of implantation. The specimens were examined using analytical scanning and transmission electron microscopy, up to the lattice plane resolution level. Degradation processes of the implants developed at the interfaces encouraged osseous tissue ingrowth into the periphery of the material, changing the microstructure of the implants. The ionic exchange initiated at the implant interface with the environment was essential in the integration process of the implant, through a dissolution–precipitation–transformation mechanism. The interfaces developed normal biological and chemical activities and remained reactive over the 8-week period. Organized collagen fibrils were found at the αTCPss/bone interface after 4 weeks, whereas a collagen-free layer was present around the Si-free αTCP implants. These findings suggest that the incorporation of silicate ions into αTCP ceramic promotes processes of the bone remodeling at the bone/αTCPss interface, hence the solubility rate of the αTCPss material decreased.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohner, M. (2000). Calcium orthophosphates in medicine, from ceramics to calcium phosphate cements. Injury 31(Suppl D), 3747.CrossRefGoogle Scholar
Bohner, M. (2001). Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J 10S, 114121.Google Scholar
Bohner, M. (2009). Silicon-substituted calcium phosphates—A critical view. Biomaterials 30, 64036406.CrossRefGoogle Scholar
Carlisle, E.M. (1970). Silicon, a possible factor in bone calcification. Science 167, 279280.CrossRefGoogle ScholarPubMed
Carlisle, E.M. (1980). A silicon requirement for normal skull formation in chicks. J Nutr 110, 352359.CrossRefGoogle ScholarPubMed
Carrodeguas, R.G. & de Aza, S. (2011). α-Tricalcium phosphate, synthesis, properties and biomedical applications. Acta Biomater 7, 35363546.CrossRefGoogle ScholarPubMed
De Aza, P.N., De Aza, A.H. & de Aza, S. (2005). Crystalline bioceramic materials. Bol Soc Esp Ceram V 44(3), 135145.CrossRefGoogle Scholar
Dorozhkin, S.V. (2008). Calcium orthophosphate cements for biomedical application. J Mater Sci 43, 30283057.CrossRefGoogle Scholar
Dorozhkin, S.V. (2009). Calcium orthophosphates in nature, biology and medicine. Materials 2, 399498.CrossRefGoogle Scholar
Ducheyne, P. & Qiu, Q. (1999). Bioactive ceramics, the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 22872303.CrossRefGoogle Scholar
Ehara, A., Ogata, K., Imazato, S., Ebisu, S., Nakano, T. & Umakoshi, Y. (2003). Effects of α-TCP and TetCP on MC3T3–E1 proliferation, differentiation and mineralization. Biomaterials 24, 831836.CrossRefGoogle ScholarPubMed
Elliot, J.C. (1994). Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier Science.Google Scholar
Fujita, R., Yokoyama, A., Kawasaki, T. & Kohgo, T. (2003). Bone augmentation osteogenesis using hydroxyapatite and α-tricalcium phosphate blocks. J Oral Maxillofac Surg 61, 10451105.CrossRefGoogle Scholar
Fushimi, M. (1995). Solubilities and bone interfaces in sintered α-tricalcium phosphate and hydroxyapatite. J Jpn Soc Biomater 13, 224235.Google Scholar
Habibovic, P., Yuan, H., van der Valk, C.M., Meijer, G., van Blitterswijk, C.A. & de Groot, K. (2005). 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26, 35653575.CrossRefGoogle ScholarPubMed
Jugdaohsingh, R., Tucker, K.L., Qiao, N., Cupples, L.A., Kiel, D.P. & Powell, J.J. (2004). Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 19, 297307.CrossRefGoogle ScholarPubMed
Kihara, H., Shiota, M., Yamashita, Y. & Kasugai, S. (2006). Biodegradation process of αTCP particles and new bone formation in a rabbit cranial defect model. J Biomed Mater Res B 79B, 284291.CrossRefGoogle Scholar
Knabe, C., Berger, G., Gildenhaar, R., Meyer, J., Howlett, C.R., Markovic, B. & Zreiqat, H. (2004). Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro. J Biomed Mater Res A 69, 145154.CrossRefGoogle Scholar
Martinez, I.M., Meseguer-Olmo, L., Bernabeu-Esclapez, A., Velasquez, P. & de Aza, P.N. (2012a). In vitro behavior of α-tricalcium phosphate doped with dicalcium silicate in the system Ca2SiO4-Ca3(PO4)2 . Mat Charact 63, 4755.CrossRefGoogle Scholar
Martinez, I.M., Velasquez, P.A. & De Aza, P.N. (2010). Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca2SiO4-Ca3(PO4)2 . Mater Charact 61, 761767.CrossRefGoogle Scholar
Martinez, I.M., Velasquez, P.A. & De Aza, P.N. (2012b). The sub-system α-TCPss-siliciocarnotite within the binary system Ca3(PO4)2-Ca2SiO4 . J Am Ceram Soc 95(3), 11121117.CrossRefGoogle Scholar
Martinez, I.M., Velasquez, P.A., Meseguer-Olmo, L., Bernabeu-Esclapez, A. & de Aza, P.N. (2012c). Preparation and characterization of novel bioactive α-tricalcium phosphate doped with dicalcium silicate ceramics. Mat Sci Eng C 32, 878886.CrossRefGoogle Scholar
Martinez, I.M., Velasquez, P.A., Meseguer-Olmo, L. & de Aza, P.N. (2011). Production and in vitro behaviour of monolithic α-tricalcium phosphate based ceramics in the system Ca2SiO4-Ca3(PO4)2 . Ceram Int 37, 25272535.CrossRefGoogle Scholar
Mate-Sanchez de val, J.E., Calvo-Guirado, J.L., Delgado-Ruiz, R.A., Ramirez-Fernandez, M.A.P., Martinez, I.M., Granero-Marin, J.M., Negri, B., Chiva-Garcia, F., Martinez-Gonzalez, J.M. & De Aza, P.N. (2012a). New block graft of α-TCP with silicon in critical size defects in rabbits, chemical characterization, histological, histomorphometric and micro-CT study. Ceram Int 38, 15631570.CrossRefGoogle Scholar
Mate-Sanchez de val, J.E., Calvo-Guirado, J.L., Delgado-Ruiz, R.A., Ramirez-Fernandez, M.A.P., Negri, B., Abboud, M., Martinez, I.M. & De Aza, P.N. (2012b). Physical properties, mechanical behavior and electron microscopy study of a new α-TCP block graft with silicon in animal model. J Biomed Mater Res Part A 100A, 34463454.CrossRefGoogle Scholar
Mayr-Wohlfart, U., Fiedler, J., Gunther, K.P., Puhl, W. & Kessler, S. (2001). Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials. J Biomed Mat Res 57, 132139.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Meseguer-Olmo, L., Aznar-Cervantes, S., Mazón, P. & De Aza, P.N. (2012). In vitro behaviour of adult mesenchymal stem cells of human origin seeded on a novel bioactive ceramics in the Ca2SiO4-Ca3(PO4)2 system. J Mater Sci Mater Med 23, 30033014.CrossRefGoogle Scholar
Minarelli-Gaspar, A.M., Saska, S., Carrodeguas, R.G., De Aza, A.H., Pena, P., De Aza, P.N. & De Aza, S. (2009). Biological response to wollastonite doped α-tricalcium phosphate implants in hard and soft tissues in rats. Key Eng Mater 396398, 710.Google Scholar
Ming-You, S., Shinn-Jyh, D. & Hsien-Chang, C.H. (2011). The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7, 26042614.Google Scholar
Radin, S.R. & Ducheyne, P. (1993). The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. Biomed Mater Res 27, 3545.CrossRefGoogle ScholarPubMed
Sato, S., Koshino, T. & Saito, T. (1998). Osteogenic response of rabbit tibia to hydroxyapatite particle-plaster of paris mixture. Biomaterials 19, 18951900.CrossRefGoogle ScholarPubMed
Velasquez, P., Meseguer-Olmo, L., Mate-Sanchez de val, J.E., Calvo-Guirado, J.L., Delgado-Ruiz, R.A., Ramirez-Fernandez, M.A.P. & De Aza, P.N. (2013). α-TCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method, in vitro and in vivo studies. J Biomed Mater Res Part A 101A, 19431954.CrossRefGoogle Scholar
Wiltfang, J., Merten, H.A., Schlegel, K.A., Schultze-Mosgau, S., Kloss, F.R., Rupprecht, S. & Kessler, P. (2002). Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63, 115121.CrossRefGoogle ScholarPubMed
Yamada, M., Shiota, M., Yamashita, Y. & Kasugai, S. (2007). Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β tricalcium phosphate in block grafts. J Biomed Mater Res B 82B, 139148.CrossRefGoogle Scholar