Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:41:01.422Z Has data issue: false hasContentIssue false

Cantharidin-Mediated Ultrastructural and Biochemical Changes in Mitochondria Lead to Apoptosis and Necrosis in Murine Dalton's Lymphoma

Published online by Cambridge University Press:  13 September 2013

Surya B. Prasad*
Affiliation:
Department of Zoology, Cell and Tumor Biology Laboratory, North-Eastern Hill University, Shillong-793 022, India
Akalesh K. Verma
Affiliation:
Department of Zoology, Cell and Tumor Biology Laboratory, North-Eastern Hill University, Shillong-793 022, India
*
*Corresponding author. E-mail: sbpnehu@hotmail.com
Get access

Abstract

Cantharidin, a type of terpenoid, is the blistering agent of blister beetles frequently used in traditional medicine. The isolation and anticancer activity of cantharidin from blister beetles, Mylabris cichorii has been recently reported by us. This study deals with changes in mitochondrial structure and function and understanding their significance in the underlying mechanism(s) in cantharidin-mediated antitumor effects in Dalton's lymphoma (DL) bearing mice. Cantharidin treatment caused the appearance of abnormal mitochondrial features which included roundish mitochondria with thickened membranes, irregularity in cristae, and appearance of small and large size vacuoles in mitochondria of DL cells. Cantharidin treatment resulted in a decrease in mitochondrial reduced glutathione, succinate dehydrogenase activity, mitochondrial membrane potential, and induced apoptosis and necrosis in DL cells. The decrease/release of mitochondrial cytochrome c were also observed after cantharidin treatment. Flow cytometry-based cell cycle analysis showed a time-dependent accumulation of the sub-G0 population of DL cells, thus, confirming the involvement of apoptosis in tumor cells in cantharidin-mediated antitumor activity. These finding signify that the apoptosis induced by cantharidin in DL cells should involve mitochondrial-dependent pathways. It is suggested that these cantharidin-mediated changes in mitochondria may play a crucial role in its antitumor activity.

Type
Biomedical and Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajith, T.A. & Janardhanan, K.K. (2003). Cytotoxic and antitumor activities of a polypore macrofungus, Phellinusrimosus (Berk) Pilat. J Ethnopharmacol 84, 157162.Google Scholar
Baumbach, J.L. & Sheth, P.B. (2001). Topical and intralesional antiviral agents. In Comprehensive Dermatologic Drug Therapy, Wolverton, S.E. (Ed.), pp. 524536. Philadelphia, PA: W. B. Saunders Company.Google Scholar
Bea-trice, M.C., Stiers, D.L. & Pfeiffer, D.R. (1984). The role of glutathione in the retention of Ca2+ by liver mitochondria. J Biol Chem 259, 12791281.CrossRefGoogle Scholar
Biasutto, L., Sassi, N., Mattarei, A., Marotta, E., Cattelan, P., Toninello, A., Garbisa, S., Zoratti, M. & Paradisi, C. (2010). Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochim Biophy Acta 1797, 189196.CrossRefGoogle ScholarPubMed
Cotovio, P., Silva, C., Marques, M.G., Ferrer, F., Costa, F., Carreira, A. & Campos, M. (2013). Acute kidney injury by cantharidin poisoning following a silly bet on an ugly beetle. Clin Kidney J 6, 201203.Google Scholar
Dumas, J.F., Roussel, D. & Servais, S. (2012). Mitochondria and cancer, chapter 4,. In Cellular Bioenergetics in Health and Diseases: New Perspectives in Mitochondrial Biology, ISBN: 978-81-308-0487-3, Lou, P.H. & Petersen, N. (Eds.), pp. 115147. Trivandrum, India: Research Signpost.Google Scholar
Estrela, J.M., Hernandez, R., Terradez, P., Asensi, M., Puertes, I.R. & Vina, J. (1992). Regulation of glutathione metabolism in Ehrlich ascites tumour cells. Biochem J 286, 257262.Google Scholar
Franklin, D.J., Brussaard, C.P.D. & Berges, J.A. (2006). What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41, 114.Google Scholar
Fulda, S., Galluzzi, L. & Kroemer, G. (2010). Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9, 447464.Google Scholar
Goldie, H. & Felix, M.D. (1951). Growth characteristics of free tumor cells transformed serially in the peritoneal fluid of the mouse. Cancer Res 11, 7380.Google Scholar
Gomes, A., Bhattacharjee, P., Mishra, R., Biswas, A.K., Dasgupta, S.C. & Giri, B. (2010). Anticancer potential of animal venoms and toxins. Indian J Expt Biol 48, 93103.Google Scholar
Graziano, M.J., Waterhouse, A.L. & Casida, J.E. (1987). Cantharidin poisoning associated with specific binding site in liver. Biochem Biophys Res Commun 149, 7985.Google Scholar
Honkanen, R.E. (1993). Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett 330, 283286.Google Scholar
Huan, S.K., Lee, H.H., Liu, D.Z., Wu, C.C. & Wang, C.C. (2006). Cantharidin induced cytotoxicity and cyclooxygenase 2 expression in human bladder carcinoma cell line. Toxicology 223, 136143.Google Scholar
Huang, W., Ko, S., Tsai, H., Chung, J., Chiang, J., Chen, K., Chen, Y., Chen, H., Chen, U. & Yang, J. (2011). Cantharidin induces G2/M phase arrest and apoptosis in human colorectal cancer colo 205 cells through inhibition of CDK1 activity and caspase-dependent signaling pathways. Int J Oncol 38, 10671073.Google Scholar
Jollow, D.J., Mitchell, J.R., Zampaglione, N. & Gillette, J.R. (1974). Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic intermediate. Pharmacology 11, 151169.CrossRefGoogle Scholar
Karna, P., Zughaier, S., Pannu, V., Simmons, R., Narayan, S. & Aneja, R. (2010). Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J Biol Chem 285, 1873718748.Google Scholar
Kim, J.W. & Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66, 89278930.Google Scholar
Kim, M., Cooper, D.D., Hayes, S.F. & Spangrude, G.J. (1998). Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91, 41064117.Google Scholar
King, A., Selak, M.A. & Gottlieb, E. (2006). Succinate dehydrogenase and fumaratehydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 46754682.Google Scholar
Koukourakis, M., Giatromanolaki, A., Harris, A.L. & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor associated stroma. Cancer Res 66, 632637.Google Scholar
Kroemer, G., Galluzzi, L. & Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99163.CrossRefGoogle ScholarPubMed
Kuo, J.H., Chu, Y.L., Yang, J.S., Lin, J.P., Lai, K.C., Kuo, H.M., Hsia, T.C. & Chung, J.G. (2010). Cantharidin induces apoptosis in human bladder cancer TSGH 8301 cells through mitochondria-dependent signal pathways. Int J Oncol 37, 12431250.Google Scholar
Kusao, I., Troelstrup, D. & Shiramizu, B. (2008). Possible mitochondria associated enzymatic role in non-Hodgkin lymphoma residual disease. Cancer Growth Metastasis 1, 38.Google Scholar
Laparra, J.M., Velez, D., Barbera, R., Farre, R. & Montoro, R. (2008). As2O3-induced oxidative stress and cycle progression in a human intestinal epithelial cell line (Caco-2). Toxicol. In Vitro 22, 444449.Google Scholar
Le-Quoc, K. & Le-Quoc, D. (1989). Relationships between the NAD (P) redox state, fatty acid oxidation and inner membrane permeability in rat liver mitochondria. Arch Biochem Biophys 273, 466478.Google Scholar
Liao, H., Chen, Y., Chou, C., Wang, F. & Cheng-Deng Kuo, C. (2011). Norcantharidin induces cell cycle arrest and inhibits progression of human leukemic Jurkat T cells through mitogen-activated protein kinase-mediated regulation of interleukin-2 production. Toxicol. In Vitro 25, 206212.Google Scholar
Liu, D., Shi, P., Yin, X., Chen, Z. & Zhang, X. (2012). Effect of norcantharidin on the human breast cancer Bcap-37 cells. Connect Tissue Res 53, 508512.Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.Google Scholar
Majno, G. & Joris, I. (1995). Apoptosis, oncosis, and necrosis an overview of cell death. Am J Pathol 146, 115 Google Scholar
Martha, K.R.M., Rosangkima, G., Longchar, A., Rongpi, T. & Prasad, S.B. (2013). Cisplatin- and dietary ascorbic acid-mediated changes in the mitochondria of Dalton's lymphoma-bearing mice. Fund Clin Pharmacol 27, 329338.Google Scholar
McKenzie, D. & Henderson, A.R. (1983). Electrophoresis of lactate dehydrogenase isoenzymes. Clin Chem 29, 189195.Google Scholar
Meister, A. & Anderson, M.E. (1983). Glutathione. Ann Rev Biochem 52, 711760.Google Scholar
Mignotte, B. & Vayssiere, J. (1998). Mitochondria and apoptosis. Eur J Biochem 252, 115.CrossRefGoogle ScholarPubMed
Modica-Napolitano, J.S. & Singh, K.K. (2004). Mitochondrial dysfunction in cancer. Mitochondrion 4, 755762.Google Scholar
Murphy, M.P. & Smith, R.A.J. (2000). Drug delivery to mitochondria: The key to mitochondrial medicine. Adv Drug Deliv Rev 41, 235250.Google Scholar
Nirmala, J.M., Samundeeswari, A. & Sankar, P.D. (2011). Natural plant resources in anti-cancer therapy—A review. Res Plant Biol 1, 114.Google Scholar
Pamplona, R., Prat, J., Cadenas, S., Rojas, C., Perez-Campo, R., Lopez Torres, M. & Barja, G. (1996). Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species, the pigeon and human case. Mech Aging Dev 86, 5366.Google Scholar
Petit, P.X., Le Cover, H., Zorn, H., Dauget, C., Mignotte, B. & Gougeon, M.L. (1995). Alteration of mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 130, 156167.Google Scholar
Porter, N.A., Caldwell, S.E. & Mills, K.A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277290.Google Scholar
Prasad, S.B., Rosangkima, G. & Kharbangar, A. (2010b). Structural and biochemical changes in mitochondria after cisplatin treatment of Dalton's lymphoma-bearing mice. Mitochondrion 10, 3845.Google Scholar
Prasad, S.B., Verma, A.K., Rosangkima, G., Brahma, B., Rongpi, T., Amenla & Arjun, J. (2010a). Antitumor activity of Mylabris cichorii extracts against murine ascites Dalton's lymphoma. J Pharmacy Res 3, 30063009.Google Scholar
Rolfe, D.F.S. & Brown, G.C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77, 731758.CrossRefGoogle ScholarPubMed
Shaw, J.P. & Chou, I.N. (1986). Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J Cell Physiol 129, 193198.Google Scholar
Sieder, S., Richter, E., Becker, K., Heins, R. & Steinfelder, H.J. (1999). Doxorubicin resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A. Toxicology 134, 109115.Google Scholar
Stewart, B.W. & Kleihues, P. (Eds.) (2003). World Cancer Report. Lyon, France: IARC Press.Google Scholar
Sun, X., Liao, N.K. & Yu, J.J. (2012). Prognostic value of a mitochondrial functional score in prostate cancer. J Int Med Res 40, 371376.Google Scholar
Terradez, P., Asensi, M., Lasso de la Vega, M.C., Puertes, I., Vina, J. & Estrela, J.M. (1993). Depletion of tumor glutathione in vivo by buthionine sulfoximine: Modulation by the rate of cellular proliferation and inhibition of cancer growth. Biochem J 292, 477483.Google Scholar
Thomsen, R. & Christensen, M.H. (2006). MolDock: A new technique for high-accuracy molecular docking. J Med Chem 49, 33153321.Google Scholar
Tsauer, W., Lin, J.G., Lin, P.Y., Hsu, F.L. & Chiang, H.C. (1997). The effects of cantharidin analogues on xanthine oxidase. Anticancer Res 17, 20952098.Google Scholar
Verma, A.K. & Prasad, S.B. (2012). Bioactive component, cantharidin from Mylabris cichorii and its antitumor activity against Ehrlich ascites carcinoma. Cell Biol Toxicol 28, 133147.Google Scholar
Verma, A.K. & Prasad, S.B. (2013). Changes in glutathione, oxidative stress and mitochondrial membrane potential in apoptosis involving the anticancer activity of cantharidin isolated from redheaded blister beetles, Epicauta hirticornis . Anticancer Agents Med Chem 13, 10961114.Google Scholar
Verma, A.K., Prasad, S.B., Kaliyappan, R.K. & Arjun, J. (2013). Crystal structure of cantharidin (2, 6-dimethyl-4, 10-dioxatricyclo-[5.2.1.02, 6] decane-3, 5-dione) isolated from red headed blister beetle, Epicauta hirticornis . Int J Bioassays 2, 527530.Google Scholar
Walenta, S., Snyder, S., Haroon, Z.A., Braun, R.D., Amin, K., Brizel, D., Mueller-Klieser, W., Chance, B. & Dewhirst, M.W. (2001). Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 51, 840848.Google Scholar
Wallace, C.A., Laskowski, A.R. & Thornton, M.J. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127134.Google Scholar
Wang, C.C., Wu, C.H., Hsieh, K.J., Yen, K.Y. & Yang, L.L. (2000). Cytotoxic effects of cantharidin on the growth of normal and carcinoma cells. Toxicology 147, 7787.Google Scholar
Wang, G.S. (1989). Medical uses of Mylabris in ancient China and recent studies. J Ethnopharmacol 26, 147162.Google Scholar
Warburg, O. (1956). On the origin of cancer of cells. Science 123, 309314.Google Scholar
Wera, S. & Hemmings, B.A. (1995). Serine/threonine protein phosphatases. Biochem J 311, 1729.Google Scholar
World Health Organization (WHO) (2008). Traditional Medicine Fact Sheet No. 134 . Available at www.who.int/mediacentre/factsheets/fs134/en/.Google Scholar
Wright, J.R., Colby, H.D. & Miles, P.R. (1981). Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206, 296304.Google Scholar
Yao, X., Panichpisal, K., Neilkurtzman, N. & Nugent, K. (2007). Cisplatin nephrotoxicity: A review. Am J Med Sci 334, 115124.Google Scholar
Yeh, C., Yang, Y., Huang, Y., Chow, K. & Chen, M. (2012). Induction of apoptosis in human Hep3B Hepatoma cells by norcantharidin through a p53 independent pathway via TRAIL/DR5 signal transduction. Chin J Integr Med 18, 676682.Google Scholar
Zamble, B.D. & Lippard, S.J. (1995). Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20, 435439.Google Scholar
Zeiss, C.J. (2003). The apoptosis-necrosis continuum: Insights from genetically altered mice. Vet Pathol 40, 481495.Google Scholar
Zhang, J.P., Ying, K., Xiao, Z.Y., Zhou, B., Huang, Q.S., Wu, H.M., Yin, M., Xie, Y., Mao, Y.M. & Rui, Y.C. (2004). Analysis of gene expression profiles in human HL-60 cell exposed to cantharidin using cDNA microarray. Int J Cancer 108, 212218.Google Scholar