Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T17:39:34.435Z Has data issue: false hasContentIssue false

Characterization of Fibrous Mimetite

Published online by Cambridge University Press:  19 February 2014

Vincent Thiéry*
Affiliation:
Mines Douai, LGCgE-GCE, F-59508 Douai, France
*
*Corresponding author. vincent.thiery@mines-douai.fr
Get access

Abstract

Mimetite, Pb5(AsO4)3Cl, is a ubiquitous mineral that is of interest in various fields such as ore mineralogy, environmental studies, and minerals engineering. Mimetite generally forms hexagonal prisms and barrel-shaped crystals, but its fibrous form is quite an uncommon one. Here we attempt to present its worldwide occurrences on the basis of a literature review. We then present a study on fibrous mimetite from one of its historical locations based on the petrographic microscope, SEM-SE and EDX, and Raman spectroscopy.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baikie, T., Ferraris, C., Klooster, W.T., Madhavi, S., Pramana, S.S., Pring, A., Schmidt, G. & White, T.J. (2008). Crystal chemistry of mimetite, Pb10(AsO4)6Cl1.48O0.26, and finnemanite, Pb10(AsO3)6Cl2 . Acta Crystallogr B 64(1), 3441.CrossRefGoogle ScholarPubMed
Bajda, T. (2010). Solubility of mimetite Pb5(AsO4)3Cl at 5–55°C. Environ Chem 7(3), 268278.CrossRefGoogle Scholar
Bajda, T., Mozgawa, W., Manecki, M. & Flis, J. (2011). Vibrational spectroscopic study of mimetite-pyromorphite solid solutions. Polyhedron 30(15), 24792485.CrossRefGoogle Scholar
Bajda, T., Szmit, E. & Manecki, M. (2007). Removal of As (V) from solutions by precipitation of mimetite Pb5(AsO4)3Cl. In Environmental Engineering Pawłowski, D.A.P. (Ed.), pp. 119124. London: Taylor & Francis Group.Google Scholar
Beudant, F.S. (1832). Traité élémentaire de minéralogie. Deuxième édition, tome 2. Paris: Chez Verdière, libraire-éditeur.Google Scholar
Bons, P.D., Elburg, M.A. & Gomez-Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. J Struct Geol 43, 3362.CrossRefGoogle Scholar
Bril, H., Zainoun, K., Puziewicz, J., Courtin-Nomade, A., Vanaecker, M. & Bollinger, J.-C. (2008). Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland. Can Mineral 46(5), 12351248.CrossRefGoogle Scholar
Chermette, A. (1923). Sur les associations de la fluorine des Moléras en Saint-Prix-sous-Beuvray (Saône-et-Loire). Bulletin de la société française de minéralogie et de cristallographie 46, 101107.CrossRefGoogle Scholar
Dai, Y., Hughes, J.M. & Moore, P.B. (1991). The crystal structures of mimetite and clinomimetite, Pb5(AsO4)3Cl. Can Mineral 29, 369376.Google Scholar
De Champeaux, J.-F. (1800–1801). Note sur une nouvelle espèce de mine de plomb, reconnue pour être du plomb arsénié natif. Journal des Mines LV, 543546.Google Scholar
De Morveau, G. & Champy, J.-P. (1782). Examen d'une mine de plomb trouvée à Saint-Prix-sous-Beuvray et observations minéralogiques sur cette partie de la Bourgogne. Nouveaux mémoires de l'académie de Dijon, pour la partie des sciences et arts (Seconde semestre), 4152.Google Scholar
England, B.M. & Robinson, N. (1988). Mimetite and duftite from the Mount Bonnie mine, Northern Territory (Australia). Mineral Rec 20, 369384.Google Scholar
Ettler, V., Mihaljeviča, M., Šebek, O., Valigurová, R. & Klementová, M. (2012). Differences in antimony and arsenic releases from lead smelter fly ash in soils. Chemie der Erde – Geochemistry 72(Suppl 4), 1522.CrossRefGoogle Scholar
Flis, J., Manecki, M. & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl-mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta 75(7), 18581868.CrossRefGoogle Scholar
Förtsch, E. & Wondratschek, H. (1965). Zur Kristallchemie der Minerale der Pyromorphit-Gruppe. Naturwissenschaften 52(8), 182.CrossRefGoogle Scholar
Frost, R.L., Bouzaid, J.M. & Palmer, S. (2007). The structure of mimetite, arsenian pyromorphite and hedyphane—A Raman spectroscopic study. Polyhedron 26(13), 29642970.CrossRefGoogle Scholar
Ginderow, D. (1988). Structure cristalline d’un chloro-silico-chromate de plomb, Pb5(CrO4,SiO4)3Cl. Zeitschrift für Kristallographie 184, 185190.CrossRefGoogle Scholar
Gołębiowska, B., Pieczka, A. & Franus, W. (2002). Ca-bearing phosphatian mimetite from Rędziny, Lower Silesia, Poland. Neues Jahrbuch für Mineralogie—Monatshefte 2002(1), 3141.CrossRefGoogle Scholar
Guillemin, C., Prouvost, J. & Wintenberger, M. (1955). Sur les variétés fibreuses de Mimétite (Prixite) et de Vanadinite. Bulletin de la Société Française de Minéralogie 78, 301306.Google Scholar
Kampf, A., Mills, S. & Pinch, W. (2011). Plumboselite, Pb3O2(SeO3), a new oxidation-zone mineral from Tsumeb, Namibia. Miner Petrol 101(1–2), 7580.CrossRefGoogle Scholar
Lalinská-Voleková, B., Majzlan, J., Klimko, T., Chovan, M., Kučerová, G., Michňová, J., Hovorič, R., Göttlicher, J. & Steininger, R. (2012). Mineralogy of weathering products of Fe-As-Sb mine wastes and soils at several Sb deposits in Slovakia. Can Mineral 50(2), 481500.CrossRefGoogle Scholar
Leymerie, A. (1867). Cours de Minéralogie (Histoire Naturelle) – Deuxième partie – Deuxième édition. Paris: Victor Masson et fils.Google Scholar
Lyalina, L.M., Savchenko, Y.E., Selivanova, E.A. & Zozulya, D.R. (2010). Behoite and mimetite from the Saharjok alkaline intrusion, Kola Peninsula. Geol Ore Deposit 52(7), 641645.CrossRefGoogle Scholar
Mamindy-Pajany, Y., Hurel, C., Geret, F., Roméo, M. & Marmier, N. (2013). Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: A pilot-scale experiment. J Hazard Mater 252–253, 213219.CrossRefGoogle Scholar
Marlot, H. (1913). Notice sur la Mine de Galène argentifère des Moléras, commune de Glux (Nièvre). Bulletin de la Société d'Histoire Naturelle d'Autun (compte-rendu des séances et des excursions). Autun: Dejussieu et Demasy, Imprimeurs-Libraires, 8086.Google Scholar
Masaoka, M., Kyono, A., Hatta, T. & Kimata, M. (2006). Single crystal growth of Pb5(PxAs1-xO4)3Cl solid solution with apatite type structure. J Cryst Growth 292(1), 129135.CrossRefGoogle Scholar
Miers, H.A. (1902). Mineralogy: An Introduction to the Scientific Study of Minerals. London: Macmillan and Co., limited.Google Scholar
Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A. & Poirier, G. (2009). Joëlbruggerite, Pb3Zn3(Sb5+,Te6+)As2O13(OH,O), the Sb5+ analog of dugganite, from the Black Pine mine, Montana. Am Mineral 94, 10121017.CrossRefGoogle Scholar
Moradi, S. & Monhemius, A.J. (2011). Mixed sulphide-oxide lead and zinc ores: Problems and solutions. Minerals Engineering 24(10), 10621076.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. Eur J Mineral 22, 163179.CrossRefGoogle Scholar
Passaqui, J.P., Demaizière, J.F., Gourault, C., Szulak, L., Perraudin, M. & De Ascenção Guedes, R. (2007). Les Molérats (Saône-et-Loire). Le règne minéral (Hors série XIII – Les minéraux du Morvan) 9196.Google Scholar
Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. & Jebavá, I. (2011). Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St Joachimsthal), Czech Republic. J Geosci 56, 257271.Google Scholar
Sejkora, J., Škovíra, J., Čejka, J. & Plášil, J. (2009). Cu-rich members of the beudantite–segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. J Geosci 54, 354371.Google Scholar
Unkknown (1921). Monatsversammlung am 14. März 1921 im mineralogisch-petrographischen Institute der Universität. Tschermaks mineralogische und petrographische Mitteilungen 35(2), 1720.CrossRefGoogle Scholar
von Haidinger, W. (1845). Handbuch der bestimmenden Mineralogie. Wien: Braumuller & Seidel.Google Scholar
Yang, Z.M., Ding, K.S., de Fourestier, J. & Li, H. (2013). The crystal structure of mimetite-2M, a new polymorph of mimetite from Xianghualing tin-polymetallic orefield, Hunan Province, P. R. China. Neues Jahrbuch Fur Mineralogie-Abhandlungen 190(2), 229235.CrossRefGoogle Scholar