Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T13:15:40.524Z Has data issue: false hasContentIssue false

Characterization of Functionalized Multiwalled Carbon Nanotubes for Use in an Enzymatic Sensor

Published online by Cambridge University Press:  26 August 2014

Leonor Guadarrama-Fernández
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio S/N, Colonia Santo Tomas, CP 11340 México City, México
Jorge Chanona-Pérez*
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio S/N, Colonia Santo Tomas, CP 11340 México City, México
Arturo Manzo-Robledo
Affiliation:
Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Edif. Z-5, 3er. Piso. UPALM-Zacatenco, CP 07738, México City, México
Georgina Calderón-Domínguez
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio S/N, Colonia Santo Tomas, CP 11340 México City, México
Adrián Martínez-Rivas
Affiliation:
Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n casi esquina Miguel Othón de Mendizábal, UPALM-Zacatenco, C.P. 07738, Del. Gustavo A. Madero, Mexico City, Mexico
Jaime Ortiz-López
Affiliation:
Escuela Superior de Físico Matemáticas, Instituto Politécnico Nacional, Edif. 9 UPALM-Zacatenco, CP 07738, México City, México
Jorge Roberto Vargas-García
Affiliation:
Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Edif 7, UPALM-Zacatenco, CP 07738, México City, México
*
*Corresponding author. jorge_chanona@hotmail.com
Get access

Abstract

Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3–H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arepalli, S., Nikolaev, P., Gorelik, O., Hadjiev, V., Holmes, W., Files, B. & Yowell, L. (2004). Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 42, 17831791.CrossRefGoogle Scholar
Ashly, P.C. & Mohanan, P.V. (2010). Preparation and characterization of Rhizopus amyloglucosidase immobilized on poly(o-toluidine). Process Biochem 45(8), 14221426.CrossRefGoogle Scholar
Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E. & Tour, J.M. (2001). Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun, 193194.CrossRefGoogle Scholar
Baitinger, E.M., Vekesser, N.A., Kovalev, I.N., Sinitsyn, A.A., Tsygankov, I.A., Ryabkov, Y.I. & Viktorova, V.V. (2011). Structure of multiwalled carbon nanotubes grown by chemical vapor deposition. Inorg Mater 47, 251254.CrossRefGoogle Scholar
Baker, S.E., Cai, W., Lasseter, T.L., Weidkamp, K.P. & Hamers, R.J. (2002). Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett 2, 14131417.CrossRefGoogle Scholar
Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T.W. & Mioskowski, C. (1999). Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chem Int Ed 38, 19121915.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Belin, T. & Epron, F. (2005). Characterization methods of carbon nanotubes: A review. J Mater Sci Eng B 119, 105118.CrossRefGoogle Scholar
Cang-Rong, J.T. & Pastorin, G. (2009). The influence of carbon nanotubes on enzyme activity and structure: Investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnol 20(25), 255102.CrossRefGoogle ScholarPubMed
Chen, X.L., Li, W.S., Tan, C.L., Li, W. & Wi, Y.Z. (2008). Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J Power Sources 184, 668674.CrossRefGoogle Scholar
Crespo, G.A., Gugsa, D., Macho, S. & Rius, F.X. (2009). Solid contact pH-selective electrode using multi-walled carbon nanotubes. Anal Bioanal Electrochem 395, 23712376.CrossRefGoogle ScholarPubMed
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10, 751758.CrossRefGoogle ScholarPubMed
Feng, W. & Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29(6), 889895.CrossRefGoogle ScholarPubMed
Gao, Y.K., Traeger, F., Shekhah, O., Idriss, H. & Wöll, C. (2009). Probing the interaction of the amino acid alanine with the surface of ZnO (1010). J Colloid Interface Sci 338, 1621.CrossRefGoogle ScholarPubMed
Gervais, M., Douy, A. & Gallot, B. (1988). X-ray photoelectron spectroscopy of ABA polypeptide-polybutadiene-polypeptide triblock. Polymer 29, 17791783.CrossRefGoogle Scholar
Kalbac, M., Hsieh, Y.P., Farhat, H., Kavan, L., Hofmann, M., Kong, J. & Dresselhaus, M.S. (2010). Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. Nano Lett 10, 46194626.CrossRefGoogle ScholarPubMed
Kang, S.Z., Yin, D., Li, X. & Mu, J. (2011). A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high dispersibility in ethanol. Colloids Surf A 384, 363367.CrossRefGoogle Scholar
Kim, Y., Cho, J., Ansari, S.G., Kim, H., Dar, M.A., Seo, H., Kim, G., Lee, D., Khang, G. & Shin, H. (2006). Immobilization of avidin on the functionalized carbon nanotubes. Synth. Met. 156, 938943.CrossRefGoogle Scholar
Kumar, F.S., Koinkarc, P.M., Avasthib, D.K., Pivind, J.C. & More, M.A. (2009). Effect of intense laser and energetic ion irradiation on Raman modes of multiwalled carbon nanotubes. Thin Solid Films 517, 43224324.CrossRefGoogle Scholar
Li-xiang, L. & Feng, L. (2011). The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26, 224228.Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.CrossRefGoogle ScholarPubMed
Peng, Y., Rong-Bing, W. & Xin-Ping, W. (2009). Quantitative enzyme immobilization: Control of the carboxyl group density on support surface. J Mol Catal B: Enzym 61, 296302.Google Scholar
Porro, S., Musso, S., Vinante, M., Vanzetti, L., Anderle, M., Trotta, F. & Tagliaferro, A. (2007). Purification of carbon nanotubes grown by thermal CVD. Physica E 37, 5861.CrossRefGoogle Scholar
Ramadas, M., Hoist, O. & Mattiasson, B. (1996). Production of amyloglucosidase by Aspergillus niger under different cultivation regimens. World J Microbiol Biotechnol 12, 267271.CrossRefGoogle ScholarPubMed
Sassolas, A., Blum, L.J. & Leca-Bouvier, B.D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3), 489511.CrossRefGoogle ScholarPubMed
Shim, M., Kam, N.W.S., Chen, R.J., Li, Y. & Dai, H. (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2, 285288.CrossRefGoogle Scholar
Talbert, J.N. & Goddard, J.M. (2012). Enzymes on material surfaces. Colloids Surf B Biointerfaces 93, 819.CrossRefGoogle ScholarPubMed
Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. (2006). Chemistry of carbon nanotubes. Chem Rev 106, 11051136.CrossRefGoogle ScholarPubMed
Trojanowicz, M. (2006). Analytical applications of carbon nanotubes: A review. TrAC Trends Anal Chem 25, 480489.CrossRefGoogle Scholar
Vashist, S.K., Zheng, D., Al-Rubeaan, K., Luong, J.H. & Sheu, F.S. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29, 169188.CrossRefGoogle ScholarPubMed
Warriner, K. & Namvar, A. (2011). 4.54—Biosensors for foodborne pathogen detection. In Comprehensive Biotechnology, Moo-Young, M. (Ed.), pp. 659674. Burlington, MA: Academic Press.CrossRefGoogle Scholar
Yu, C.M., Yen, M.J. & Chen, L.C. (2010). A bioanode based on MWCNT/protein-assisted co- immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens Bioelectron 25, 25152521.CrossRefGoogle ScholarPubMed
Zhou, H., Yuanyuan, Q., Chunlei, K., Duanxing, L.i., Shen, E., Qiao, M., Xuwang, Z., Jingwei, W. & Jiti, Z. (2014). Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix. Colloids Surf B Biointerfaces 116, 365371.CrossRefGoogle ScholarPubMed