Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T18:56:25.308Z Has data issue: false hasContentIssue false

Characterization of Inertial Confinement Fusion (ICF) Targets Using PIXE, RBS, and STIM Analysis

Published online by Cambridge University Press:  23 May 2013

Yongqiang Li
Affiliation:
Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, China
Xue Liu
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang 621900, China
Xinyi Li
Affiliation:
Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, China
Yiyang Liu
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang 621900, China
Yi Zheng
Affiliation:
Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, China
Min Wang
Affiliation:
Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, China
Hao Shen*
Affiliation:
Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, China
*
*Corresponding author. E-mail: haoshen@fudan.edu.cn
Get access

Abstract

Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh–Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antolak, A.J., Pontau, A.E. & Morse, D.H. (1992). Ion microtomography and particle-induced X-ray emission analysis of direct drive inertial confinement fusion targets. J Vac Sci Technol A 10(4), 11641169.Google Scholar
Bailey, M.J., Howard, K.T., Kirkby, K.J. & Jeynes, C. (2009). Characterisation of inhomogeneous inclusions in Darwin glass using ion beam analysis. Nucl Instr Meth B 267, 22192224.Google Scholar
Brundle, C., Evans, C. & Wilson, S. (1992). Encyclopedia of Materials Characterization. Greenwich, CT: Butterworth-Heinemann and Manning.Google Scholar
Campbell, J.L., Lamb, R.D., Leigh, R.G. & Nickel, B.G. (1985). Effects of random surface roughness in PIXE analyses of thick targets. Nucl Instr Meth B 12, 402412.Google Scholar
Dahlmann, H., Fazly, Q., Mommsen, H. & Weber, A. (1984). Particle induced X-ray emission (PIXE) analyses on metal samples with structured surfaces. Nucl Instr Meth B 1, 4144.Google Scholar
Hoppe, M.L., Stephens, R.B. & Harding, D. (1997). Characterization of chemical dopants in ICF targets. Fusion Technol 31(4), 504511.Google Scholar
Joseph, R.T. & Michael, N. (1995). Handbook of modern ion beam materials analysis. In Backscattering Spectrometry, Leavitt, J.A. & McIntyre, L.C. Jr. (Eds.), pp. 3777. Pittsburgh, PA: Materials Research Society.Google Scholar
Kertész, Zs., Szikszai, Z., Uzonyi, I., Simon, A. & Kiss, Á.Z. (2005). Development of a bio-PIXE setup at the Debrecen scanning proton microprobe. Nucl Instr Meth B 231, 106111.Google Scholar
Knoll, J.F. (1989). Radiation Detection and Measurement. New York: Wiley.Google Scholar
Kubo, U., Nakano, H. & Kimb, H.G. (1997). Fabrication of cross-linked polymer shells for inertial confinement fusion experiments. J Vac Sci Technol A 15(3), 683685.Google Scholar
Li, Y.Q., Satoh, T. & Shen, H. (2011). Scanning transmission ion microscopy on Fudan SPM facility. Nucl Sci Tech 22, 282286.Google Scholar
Min, Q.R. (2007). Nuclear Microscopy: Development and Applications in Atherosclerosis, Parkinson's Disease and Materials Physics. Finland: University of Jyväskylä.Google Scholar
Molodtsov, S.L., Gurbich, A.F. & Jeynes, C. (2008). Accurate ion beam analysis in the presence of surface roughness. J Phys D: Appl Phys 41, 205303. Google Scholar
Satoh, T., Oikawa, M. & Kamiya, T. (2009). Three-dimensional measurement of elemental distribution in minute samples by combination of in-air micro-PIXE and STIM. Nucl Instr Meth B 267, 21252127.Google Scholar
Schultz, K.R., Kaae, J.L., Miller, W.J., Steinman, D.A. & Stephens, R.B. (1999). Status of inertial fusion target fabrication in the USA. Fusion Eng Des 44, 441448.Google Scholar
Singleton, R.M., Weinstein, B.W. & Hendricks, C.D. (1979). X-ray measurement of laser fusion targets using least squares fitting. Appl Optics 18(24), 41164123.Google Scholar
Theobald, M., Baclet, M.P. & Legaie, O. (2001). Doped CHx microshells prepared by radio frequency plasma enhanced chemical vapor deposition for inertial confinement fusion experiments. J Vac Sci Technol A 19(1), 118123.CrossRefGoogle Scholar
Uichi, K. & Hiroshi, T. (1986). Development of a coating technique for inertial confinement fusion plastic targets. J Vac Sci Technol A 4(3), 11341137.Google Scholar
Zdenek, N. & Campbell, J.L. (2000). Standardization of a micro-PIXE system using NIST iron- and nickel-based alloy reference materials. Nucl Instr Meth B 160, 415423.Google Scholar
Zhong, L., Zhuang, W., Shen, H., Mi, Y., Wu, Y., Liu, B., Yang, M. & Cheng, H. (2007). The Fudan nuclear microprobe set-up and performance. Nucl Instr Meth B 260, 109113.CrossRefGoogle Scholar