Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T05:44:05.626Z Has data issue: false hasContentIssue false

Characterization of the Vasa Vasorum in the Human Great Saphenous Vein: A Scanning Electron Microscopy and 3D-Morphometry Study Using Vascular Corrosion Casts

Published online by Cambridge University Press:  10 June 2014

Markus Herbst*
Affiliation:
Department of Cell Biology, Division of Animal Structure & Function, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria
Thomas Joachim Hölzenbein
Affiliation:
University Clinics for Vascular and Endovascular Surgery, PMU Salzburg, 5020 Salzburg, Austria
Bernd Minnich
Affiliation:
Department of Cell Biology, Division of Animal Structure & Function, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria
*
*Corresponding author. markus.herbst@stud.sbg.ac.at
Get access

Abstract

The vasa vasorum (VV) of explanted segments of the human great saphenous vein (Vena saphena magna; HGSV), harvested during dissection for coronary bypass grafts or diseased vein segments from the “Salzburger Landesklinikum,” were studied by scanning electron microscopy and three-dimensional morphometry of microvascular corrosion casts. The main objective of this study was to examine the VV’s structural arrangement in order to find the most vital segments of the HGSV and in turn to improve the results of coronary bypass surgeries. The study presents a meticulous analysis of the whole microvascular system of the VV of the HGSV and its three-dimensional arrangement. It is one of the first studies yielding detailed quantitative data on geometry of the VV of the HGSV. A detailed insight into different vascular parameters such as vessel diameter, interbranching, intervascular distances, and branching angles at different levels of the VV’s angioarchitecture and in different parts of the HGSV in health and disease is given. Further, the geometry of bifurcations was examined in order to compute the physiological optimality principles of this delicate vascular system based on its construction, maintenance, and function.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharinejad, S.H. & Lametschwandtner, A. (1992). Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications. Vienna: Springer-Verlag.Google Scholar
Barger, A.C., Beeuwkes, R., Lainey, L.L. & Silverman, K.S. (1984). Hypothesis: Vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310, 175177.Google Scholar
Bayer, I.M., Caniggia, I., Adamson, S.L. & Langille, B.L. (2002). Experimental angiogenesis of arterial vasa vasorum. Cell Tissue Res 307, 303313.CrossRefGoogle ScholarPubMed
Brook, W.H. (1977). Vasa vasorum of veins in dog and man. Angiology 28, 351360.CrossRefGoogle ScholarPubMed
Burri, P.H. & Djonov, V. (2002). Intussusceptive angiogenesis—the alternative to capillary sprouting. Mol Aspects Med 26, S1S27.Google Scholar
Caggiati, A. (1999). The saphenous venous compartments. Surg Radiol Anat 21, 2934.Google Scholar
Castenholz, A., Zöltzer, H. & Erhardt, H. (1982). Structures imitating myocytes and pericytes in corrosion casts of terminal blood vessels: A methodical approach to the phenomenon of “plastic strips” in SEM. Mikroskopie 39, 95106.Google Scholar
Dashwood, M.R., Anand, R., Loesch, A. & Souza, D.S. (2004). Hypothesis: A potential role for the vasa vasorum in the maintenance of vein graft patency. Angiology 55, 385395.Google Scholar
Dashwood, M.R. & Tsui, J.C. (2013). “No-touch” saphenous vein harvesting improves graft performance in patients undergoing coronary artery bypass surgery: A journey from bedside to bench. Vascul Pharmacol 58, 240250.CrossRefGoogle ScholarPubMed
Fujita, M., Russell, M.E., Masek, M.A., Rowan, R.A., Nagashima, K. & Billingham, M.E. (1993). Graft vascular disease in the great vessels and vasa vasorum. Hum Pathol 24, 10671072.Google Scholar
Geiringer, E. (1951). Intimal vascularization and atherosclerosis. J Pathol Bacteriol 63, 201211.Google Scholar
Gössl, M., Rosol, M., Malyar, N.M., Fitzpatrick, L.A., Beighley, P.E., Zamir, M. & Ritman, E.L. (2003). Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec 272A, 526537.Google Scholar
Gössl, M., Versari, D., Hildebrandt, H.A., Bajanowski, T., Sangiorgi, G., Erbel, R., Ritman, E.L., Lerman, L.O. & Lerman, A. (2010). Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging 3, 3240.CrossRefGoogle ScholarPubMed
Heistad, D.D. & Armstrong, M.L. (1986). Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys. Arteriosclerosis 6, 326331.Google Scholar
Kachlík, D., Baca, V., Fára, P., Lametschwandtner, A., Minnich, B., Musil, V., Sosna, B., Stingl, J., Straka, Z. & Setina, M. (2008 a). Blood vessels of the normal and pathologically changed wall of the human vena saphena magna. Cent Eur J Med 3, 475481.Google Scholar
Kachlík, D., Stingl, J., Sosna, B., Straka, Z., Lametschwandtner, A., Minnich, B. & Fára, P. (2008 b). Morphological features of vasa vasorum in pathologically changed human great saphenous vein and its tributaries. Vasa 37, 127136.Google Scholar
Kachlík, D., Baca, V., Stingl, J., Sosna, B., Lametschwandtner, A., Minnich, B. & Setina, M. (2007). Architectonic arrangement of the vasa vasorum of the human great saphenous vein. J Vasc Res 44, 157166.CrossRefGoogle ScholarPubMed
Kachlík, D., Lametschwandtner, A., Rejmontová, J., Stingl, J. & Vanek, I. (2003). Vasa vasorum of the human great saphenous vein. Surg Radiol Anat 24, 377381.Google Scholar
Kamiya, A. & Togawa, T. (1972). Optimal branching structure of the vascular tree. Bull Math Biophys 34, 431438.Google Scholar
Kamiya, A., Togawa, T. & Yamamoto, A. (1974). Theoretical relationship between the optimal models of the vascular tree. Bull Math Biol 36, 311323.Google Scholar
Koester, W., Cliff, W.J., Schoefl, G.I. & Higgins, G. (1876). Endarteritis and arteritis. Berl Klin Wochenschr 13, 454455.Google Scholar
Labarbera, M. (1990). Principles of design of fluid transport systems in zoology. Science 249, 9921000.CrossRefGoogle ScholarPubMed
Lametschwandtner, A., Lametschwandtner, U. & Weiger, T. (1990). Scanning electron microscopy of vascular corrosion casts—technique and applications: Updated review. Scanning Microsc 4, 889941.Google Scholar
Lametschwandtner, A., Minnich, B., Kachlík, D., Setina, M. & Stingl, J. (2004). Three-dimensional arrangement of the vasa vasorum in explanted segments of the aged human great saphenous vein: Scanning electron microscopy and three-dimensional morphometry of vascular corrosion casts. Anat Rec 281A, 13721382.Google Scholar
Lametschwandtner, A., Miodonski, A. & Simonsberger, P. (1980). On the prevention of specimen charging in scanning electron microscopy of vascular corrosion casts by attaching conductive bridges. Mikroskopie 36, 270273.Google ScholarPubMed
Langheinrich, A.C., Kampschulte, M., Buch, T. & Bohle, R.M. (2007). Vasa vasorum and atherosclerosis—Quid novi? Thromb Haemost 97, 873879.Google Scholar
Minnich, B. & Lametschwandtner, A. (2000). Lengths measurements in microvascular corrosion castings: Two-dimensional versus three-dimensional morphometry. Scanning 22, 173177.Google Scholar
Minnich, B., Leeb, H., Bernroider, E.W. & Lametschwandtner, A. (1999). Three-dimensional morphometry in scanning electron microscopy: A technique for accurate dimensional and angular measurements of microstructures using stereopaired digitized images and digital image analysis. J Microsc 195, 2333.Google Scholar
Minnich, B., Margiol, S., Frysak, J. & Bernroider, E.W.N. (2012). Morphometric SEM 3D analysis of microvascular networks and automated calculation of vessel angioarchitecture optimalities. In FORMATEX—Current Microscopy Contributions to Advances in Science and Technology, Méndes-Vilas, A. & Diaz Alvarez, J. (Eds.), pp. 191199. Formatex Research Center: Badajoz, Spain.Google Scholar
Moulton, K.S., Heller, E., Konerding, M.A., Flynn, E., Palinski, W. & Folkman, J. (1999). Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99, 17261732.Google Scholar
Murakami, T. (1971). The application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch Histol Jpn 32, 445454.CrossRefGoogle Scholar
Murray, C.D. (1926 a). The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol 9, 835841.Google Scholar
Murray, C.D. (1926 b). The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12, 207214.CrossRefGoogle ScholarPubMed
Ohhira, A. & Ohhashi, T. (1992). Effects of aortic pressure and vasoactive agents on the vascular resistance of the vasa vasorum in canine isolated thoracic aorta. J Physiol 453, 233245.CrossRefGoogle ScholarPubMed
Pisco, J.M., Correia, M., Esperanca-Pina, J.A. & de Sousa, L.A. (1993). Vasa vasorum changes following stent placement in experimental arterial stenoses. J Vasc Interv Radiol 4, 269273.Google Scholar
Rashevsky, N. (1973). The principle of adequate design. In Foundations of Mathematical Biology, Vol. III: Supercelullar Systems, Rosen, R. (Ed.), pp. 158167. New York, USA: Academic Press.Google Scholar
Ritman, E.L. & Lerman, A. (2007). The dynamic vasa vasorum. Cardiovasc Res 75, 649658.CrossRefGoogle ScholarPubMed
Schöneberger, F. & Müller, A. (1960). On the vascularization of the bovine aortic wall. Helv Physiol Pharmacol Acta 18, 136150.Google Scholar
Souza, D.S., Christofferson, R.H., Bomfin, V. & Filbey, D. (1999). “No-touch” technique using saphenous vein harvested with its surrounding tissue for coronary artery bypass grafting maintains an intact endothelium. Scand Cardiovasc J 33, 323329.Google Scholar
Williams, J.K., Armstrong, M.L. & Heistad, D.D. (1988). Vasa vasorum in atherosclerotic coronary arteries: Responses to vasoactive stimuli and regression of atherosclerosis. Circ Res 62, 515523.Google Scholar
Williams, J.K. & Heistad, D.D. (1996 a). Structure and function of vasa vasorum. Trends Cardiovasc Med 6, 5357.Google Scholar
Williams, J.K. & Heistad, D.D. (1996 b). The vasa vasorum of the arteries. J Mal Vasc 21, 266269.Google ScholarPubMed
Wolinsky, H. & Glagov, S. (1967). Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res 20, 409421.CrossRefGoogle ScholarPubMed
Zamir, M. (1976 a). The role of shear forces in arterial branching. J Gen Physiol 67, 213222.Google Scholar
Zamir, M. (1976 b). Optimality principles in arterial branching. J Theor Biol 62, 227251.Google Scholar
Zamir, M. (1978). Nonsymetrical bifurcations in arterial branching. J Gen Physiol 72, 837845.Google Scholar
Zamir, M. & Bigelow, B.C. (1984). Cost of departure from optimality in arterial branching. J Theor Biol 109, 401409.Google Scholar
Zamir, M. (1988 a). The branching structure of arterial trees. Com Theor Biol 1, 1537.Google Scholar
Zamir, M. (1988 b). Distributing and delivering vessels of the human heart. J Gen Physiol 91, 725735.Google Scholar