Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T11:36:00.522Z Has data issue: false hasContentIssue false

Charge Implantation Measurement on Electron-Irradiated Insulating Materials by Means of a SEM Technique

Published online by Cambridge University Press:  01 December 2004

Omar Jbara
Affiliation:
Dynamique de Transferts aux Interfaces, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6107, Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France
Slim Fakhfakh
Affiliation:
Dynamique de Transferts aux Interfaces, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6107, Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France
Mohamed Belhaj
Affiliation:
Dynamique de Transferts aux Interfaces, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6107, Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France
Sebastien Rondot
Affiliation:
Dynamique de Transferts aux Interfaces, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6107, Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France
Get access

Abstract

The goal of this article is first to review the charging effects occurring when an insulating material is subjected to electron irradiation in a scanning electron microscope (SEM) and next their consequences from both scanning electron microscopy and electron probe microanalysis (EPMA) points of view. When bare insulators are observed, the so-called pseudo mirror effect leads to an anomalous contrast and also to an erroneous surface potential, VS, measurement when a Duane–Hunt limit (DHL) method is used. An alternative possibility is to use an electron toroidal spectrometer (ETS), specially adapted to a SEM, which directly gives the VS value. In the case of a bulk specimen coated with a grounded layer, although the layer prevents external effects of the trapped charge, the electric field beneath the coating is reinforced and leads to loss of ionizations that reduces the number of generated X-ray photons. To take into account both effects mentioned above, whether the studied insulator is coated or not, a method is proposed to deduce the trapped charge inside the insulator and the corresponding internal or external electric field.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bai, M., Pease, R.F.W., Tanasa, C., McCord, M.A., Pickard, D.S., & Meisburger, D. (1999). Charging and discharging of electron resist films. J Vac Sci Technol 17, 28932896.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (1991). Nonconductive specimens in the electron probe microanalzer—A hitherto poorly discussed problem. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 163175. New York: Plenum Press.
Belhaj, M., Jbara, O., Filippov, M.N., Rau, E.I., & Andrianov, M.V. (2001). Analysis of two methods of measurement of surface potential of insulators in SEM: Electron spectroscopy and X-ray spectroscopy methods. Appl Surf Sci 177, 5865.Google Scholar
Belhaj, M., Jbara, O., Odof, S., Msellak, K., Rau, E.I., & Andrianov, M.V. (2000a). An anomalous contrast in scanning electron microscopy of insulators: The pseudo mirror effect. Scanning 22, 352356.Google Scholar
Belhaj, M., Odof, S., Msellak, K., & Jbara, O. (2000b). Time-dependent measurement of trapped charge in electron irradiated insulators: Application of Al2O3-sapphire. J Appl Phys 88, 22892294.Google Scholar
Bigarré, J., Fayeule, S., Paulhe, O., & Tréheux, D. (1997). Characterisation of the trapping of charges in polystyrene. IEEE Tran. Dielectr Electr Insul Annual Report-Conference on Electrical Insulation and Dielectric Phenomena. pp. 101104.
Brunner, M. & Menzel, E. (1983). Surface potential measurements on floating targets with a parallel beam technique. J Vac Sci Technol B1, 1344.Google Scholar
Cazaux, J. (1986). Some considerations on the electric field induced in insulators by electron bombardment. J Appl Phys 59, 14181430.Google Scholar
Cazaux, J. (1996). Electron probe microanalysis of insulating materials. X-ray Spectrom 25, 265280.Google Scholar
Cazaux, J. (1999a). Some considerations on electron emission from e-irradiated insulators. J Appl Phys 85, 11371147.Google Scholar
Cazaux, J. (1999b). Mechanisms of charging in electron spectroscopy. J Electron Spectrosc Rel Phen 105, 155185.Google Scholar
Cherifi, A., Abou Dakka, M., & Toureille, A. (1992). The validation of the thermal step method. IEEE Trans Electr Insul 27, 11521158.Google Scholar
Chinaglia, D.L., Hessel, R., & Oliveira, O.N., Jr. (2001). Using shifts in the electronic emission curve to evaluate polymer surface degradation. Polym Degrad Stabil 74, 97101.Google Scholar
Ehrenberg, W. & Gibbons, D.J. (1981). Electron Bombardment Induced Conductivity and Its Applications. New York: Academic.
Fakhfakh, S., Jbara, O., Belhaj, M., Fakhfakh, Z., Kallel, A., & Rau, E.I. (2002). Dynamic investigation of electron trapping and charge decay in electron-irradiated Al2O3 in scanning electron microscope: Methodology and mechanisms. Nucl Instrum Methods Phys Res B 197, 114127.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D., Lyman, C.E., Fiori, C., & Lifshin, E. (1992). Scanning Electron Microscopy and X-ray Microanalysis. Chapter 3. New York: Plenum.
Guo, H., Maus-Friedrichs, W., Kempter, V., & Shi, J. (2001). A study of charging phenomena during electron irradiation of sintered Si3N4. Nucl Instr Meth Phys Res B 173, 463469.Google Scholar
Jbara, O., Belhaj, M., Odof, S., Msellak, K., Rau, E.I., & Andrianov, M.V. (2001). Surface potential measurements of electron-irradiated insulators using backscattered and secondary electron spectra from an electrostatic toroidal spectrometer adapted for scanning electron microscope applications. Rev Sci Instrum 72, 17881795.Google Scholar
Jbara, O., Cazaux, J., & Trebbia, P. (1995). Sodium diffusion in glasses during electron irradiation. J Appl Phys 78, 868875.Google Scholar
Jbara, O., Fakhfakh, S., Belhaj, M., Cazaux, J., Rau, E.I., Filippov, M.V., & Andrianov, M. (2002). A new experimental approach for characterizing the internal trapped charge in ground coated insulators during their e irradiation. Nucl Instrum Methods Phys Res B 194, 302310.Google Scholar
Jbara, O., Portron, B., Cazaux, J., & Mouze, D. (1997). Electron probe microanalysis of insulating oxides: Monte Carlo simulations. X-ray Spectrom 26, 291302.Google Scholar
Joy, D.C. & Joy, C.S. (1999). Study of dependence of E2 energies on sample chemistry. Microsc Microanal 4, 475480.Google Scholar
Kotera, M. & Suga, H. (1988). A simulation of keV electron scattering in charged-up specimen. J Appl Phys 63, 261269.Google Scholar
Le Gressus, C., Valin, F., Henriot, H., Gauthier, J.P., Durand, J.P., Sudarshan, T.S., Bommakanti, R.G., & Blaise, G. (1991). Flashover in wide-band-gap high-purity insulators: Methodology and mechanisms. J Appl Phys 69, 63256333.Google Scholar
Melchinger, A. & Hofmann, S. (1995). Dynamic double layer model: Description of time dependent charging phenomena in insulators under electron beam irradiation. J Appl Phys 78, 62246232.Google Scholar
Rau, E.I. & Robinson, V.N.E. (1996). An annular toroidal electron energy analyser for use in scanning electron microscopy. Scanning 18, 556561.Google Scholar
Reimer, L. (1985). Scanning Electron Microscopy, Physic of Image Formation and Microanalyses. Berlin: Springer.
Seager, C.H., Warren, W.L., & Tallant, D.R. (1997). Electron beam induced charging of phosphors for low voltage display applications. J Appl Phys 81, 79948001.Google Scholar
Sessler, G.M. & Yang, G.M. (1998). Charge trapping and transport in electron-irradiated polymers. CSC'3 Proceedings SFV, 3847.
Song, Z.G., Ong, C.K., & Gong, H. (1996). A time-resolved current method for the investigation of the charging ability of insulators under electron beam irradiation. J Appl Phys 79, 71237128.Google Scholar
Takashi, M., Takashi, H., Toru, F., & Tatsuo, T. (1989). Application of ultrasonic techniques to the measurement of spatial charge and electric field distributions in solid dielectric materials. Electr Eng Jpn 109, 5864.Google Scholar
Taniguchi, J., Miyamoto, I., Ohno, N., & Honda, S. (1997). Utilizing of hydrocarbon contamination for prevention of the surface charge-up at electron-beam assisted chemical etching of a diamond chip. Nucl Instr Meth Phys Res B 121, 507509.Google Scholar
Valayer, B., Blaise, G., & Tréheux, D. (1999). Space charge measurement in dielectric material after irradiation with a 30 kV electron beam: Application to single-crystals oxide trapping properties. J Appl Phys 70, 31023112.Google Scholar
Wintle, H.J. (1997). Interpretation of atomic force microscope (AFM) signals from surface charge on insulators. Meas Sci Technol 8, 508513.Google Scholar
Wintle, H.J. (1999). Analysis of the scanning electron microscopy mirror method for studying space charge in insulators. J Appl Phys 86, 59615967.Google Scholar